History Of Physics
   HOME

TheInfoList



OR:

Physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
is a branch of
science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for ...
whose primary objects of study are
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
and
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
. Discoveries of physics find applications throughout the
natural science Natural science is one of the branches of science concerned with the description, understanding and prediction of natural phenomena, based on empirical evidence from observation and experimentation. Mechanisms such as peer review and repeatab ...
s and in
technology Technology is the application of knowledge to reach practical goals in a specifiable and reproducible way. The word ''technology'' may also mean the product of such an endeavor. The use of technology is widely prevalent in medicine, science, ...
. Physics today may be divided loosely into
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
and
modern physics Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general ...
.


Ancient history

Elements of what became physics were drawn primarily from the fields of
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
,
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
, and
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects r ...
, which were methodologically united through the study of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
. These mathematical disciplines began in antiquity with the
Babylonia Babylonia (; Akkadian: , ''māt Akkadī'') was an ancient Akkadian-speaking state and cultural area based in the city of Babylon in central-southern Mesopotamia (present-day Iraq and parts of Syria). It emerged as an Amorite-ruled state c. ...
ns and with
Hellenistic In Classical antiquity, the Hellenistic period covers the time in Mediterranean history after Classical Greece, between the death of Alexander the Great in 323 BC and the emergence of the Roman Empire, as signified by the Battle of Actium in ...
writers such as
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
and
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
.
Ancient philosophy This page lists some links to ancient philosophy, namely philosophical thought extending as far as early post-classical history (). Overview Genuine philosophical thought, depending upon original individual insights, arose in many cultures ...
, meanwhile, included what was called "
Physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
".


''Greek concept''

The move towards a rational understanding of nature began at least since the Archaic period in Greece (650–480
BCE Common Era (CE) and Before the Common Era (BCE) are year notations for the Gregorian calendar (and its predecessor, the Julian calendar), the world's most widely used calendar era. Common Era and Before the Common Era are alternatives to the or ...
) with the
Pre-Socratic philosophers Pre-Socratic philosophy, also known as early Greek philosophy, is ancient Greek philosophy before Socrates. Pre-Socratic philosophers were mostly interested in cosmology, the beginning and the substance of the universe, but the inquiries of the ...
. The philosopher
Thales of Miletus Thales of Miletus ( ; grc-gre, Θαλῆς; ) was a Greek mathematician, astronomer, statesman, and pre-Socratic philosopher from Miletus in Ionia, Asia Minor. He was one of the Seven Sages of Greece. Many, most notably Aristotle, regarded him ...
(7th and 6th centuries BCE), dubbed "the Father of Science" for refusing to accept various supernatural, religious or mythological explanations for natural
phenomena A phenomenon ( : phenomena) is an observable event. The term came into its modern philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be directly observed. Kant was heavily influenced by Gottfried W ...
, proclaimed that every event had a natural cause. Thales also made advancements in 580 BCE by suggesting that water is the basic element, experimenting with the attraction between
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
s and rubbed
amber Amber is fossilized tree resin that has been appreciated for its color and natural beauty since Neolithic times. Much valued from antiquity to the present as a gemstone, amber is made into a variety of decorative objects."Amber" (2004). In Ma ...
and formulating the first recorded cosmologies.
Anaximander Anaximander (; grc-gre, Ἀναξίμανδρος ''Anaximandros''; ) was a pre-Socratic Greek philosopher who lived in Miletus,"Anaximander" in ''Chambers's Encyclopædia''. London: George Newnes, 1961, Vol. 1, p. 403. a city of Ionia (in moder ...
, famous for his proto-
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
ary theory, disputed Thales' ideas and proposed that rather than water, a substance called ''
apeiron ''Apeiron'' (; ) is a Greek word meaning "(that which is) unlimited," "boundless", "infinite", or "indefinite" from ''a-'', "without" and ''peirar'', "end, limit", "boundary", the Ionic Greek form of ''peras'', "end, limit, boundary". Origin ...
'' was the building block of all matter. Around 500 BCE,
Heraclitus Heraclitus of Ephesus (; grc-gre, Ἡράκλειτος , "Glory of Hera"; ) was an ancient Greek pre-Socratic philosopher from the city of Ephesus, which was then part of the Persian Empire. Little is known of Heraclitus's life. He wrote ...
proposed that the only basic law governing the
Universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
was the principle of change and that nothing remains in the same state indefinitely. This observation made him one of the first scholars in ancient physics to address the role of
time Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to ...
in the universe, a key and sometimes contentious concept in modern and present-day physics. During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times,
natural philosophy Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior throu ...
slowly developed into an exciting and contentious field of study.
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of phil ...
( el, Ἀριστοτέλης, ''Aristotélēs'') (384 – 322 BCE), a student of
Plato Plato ( ; grc-gre, Πλάτων ; 428/427 or 424/423 – 348/347 BC) was a Greek philosopher born in Athens during the Classical period in Ancient Greece. He founded the Platonist school of thought and the Academy, the first institution ...
, promoted the concept that observation of physical phenomena could ultimately lead to the discovery of the natural laws governing them. Aristotle's writings cover physics,
metaphysics Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility. It includes questions about the nature of conscio ...
,
poetry Poetry (derived from the Greek ''poiesis'', "making"), also called verse, is a form of literature that uses aesthetic and often rhythmic qualities of language − such as phonaesthetics, sound symbolism, and metre − to evoke meanings i ...
,
theater Theatre or theater is a collaborative form of performing art that uses live performers, usually actor, actors or actresses, to present the experience of a real or imagined event before a live audience in a specific place, often a stage. The p ...
,
music Music is generally defined as the art of arranging sound to create some combination of form, harmony, melody, rhythm or otherwise expressive content. Exact definitions of music vary considerably around the world, though it is an aspect ...
,
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or of logical truths. It is a formal science investigating how conclusions follow from premises ...
,
rhetoric Rhetoric () is the art of persuasion, which along with grammar and logic (or dialectic), is one of the three ancient arts of discourse. Rhetoric aims to study the techniques writers or speakers utilize to inform, persuade, or motivate parti ...
,
linguistics Linguistics is the scientific study of human language. It is called a scientific study because it entails a comprehensive, systematic, objective, and precise analysis of all aspects of language, particularly its nature and structure. Linguis ...
,
politics Politics (from , ) is the set of activities that are associated with making decisions in groups, or other forms of power relations among individuals, such as the distribution of resources or status. The branch of social science that studies ...
,
government A government is the system or group of people governing an organized community, generally a state. In the case of its broad associative definition, government normally consists of legislature, executive, and judiciary. Government is a ...
,
ethics Ethics or moral philosophy is a branch of philosophy that "involves systematizing, defending, and recommending concepts of right and wrong behavior".''Internet Encyclopedia of Philosophy'' The field of ethics, along with aesthetics, concerns m ...
,
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary i ...
and
zoology Zoology ()The pronunciation of zoology as is usually regarded as nonstandard, though it is not uncommon. is the branch of biology that studies the Animal, animal kingdom, including the anatomy, structure, embryology, evolution, Biological clas ...
. He wrote the first work which refers to that line of study as "Physics" – in the 4th century BCE, Aristotle founded the system known as
Aristotelian physics Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
. He attempted to explain ideas such as
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and mea ...
(and
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
) with the theory of
four elements Classical elements typically refer to earth, water, air, fire, and (later) aether which were proposed to explain the nature and complexity of all matter in terms of simpler substances. Ancient cultures in Greece, Tibet, and India had simi ...
. Aristotle believed that all matter was made up of aether, or some combination of four elements: earth, water, air, and fire. According to Aristotle, these four terrestrial elements are capable of inter-transformation and move toward their natural place, so a stone falls downward toward the center of the cosmos, but flames rise upward toward the
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out to ...
. Eventually,
Aristotelian physics Aristotelian physics is the form of natural science described in the works of the Greek philosopher Aristotle (384–322 BC). In his work ''Physics'', Aristotle intended to establish general principles of change that govern all natural bodies, b ...
became enormously popular for many centuries in Europe, informing the scientific and scholastic developments of the
Middle Ages In the history of Europe, the Middle Ages or medieval period lasted approximately from the late 5th to the late 15th centuries, similar to the post-classical period of global history. It began with the fall of the Western Roman Empire a ...
. It remained the mainstream scientific paradigm in Europe until the time of
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
and
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
. Early in Classical Greece, knowledge that the Earth is
spherical A sphere () is a geometrical object that is a three-dimensional analogue to a two-dimensional circle. A sphere is the set of points that are all at the same distance from a given point in three-dimensional space.. That given point is the ce ...
("round") was common. Around 240 BCE, as the result of a seminal experiment,
Eratosthenes Eratosthenes of Cyrene (; grc-gre, Ἐρατοσθένης ;  – ) was a Greek polymath: a mathematician, geographer, poet, astronomer, and music theorist. He was a man of learning, becoming the chief librarian at the Library of Alexandria ...
(276–194 BCE) accurately estimated its circumference. In contrast to Aristotle's geocentric views,
Aristarchus of Samos Aristarchus of Samos (; grc-gre, Ἀρίσταρχος ὁ Σάμιος, ''Aristarkhos ho Samios''; ) was an ancient Greek astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or ...
( el, Ἀρίσταρχος; c. 310 – c. 230 BCE) presented an explicit argument for a
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, i.e. for placing the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, not the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, at its centre.
Seleucus of Seleucia Seleucus of Seleucia ( el, Σέλευκος ''Seleukos''; born c. 190 BC; fl. c. 150 BC) was a Hellenistic astronomer and philosopher. Coming from Seleucia on the Tigris, Mesopotamia, the capital of the Seleucid Empire, or, alternatively, Seleuk ...
, a follower of Aristarchus' heliocentric theory, stated that the Earth rotated around its own axis, which, in turn, revolved around the Sun. Though the arguments he used were lost,
Plutarch Plutarch (; grc-gre, Πλούταρχος, ''Ploútarchos''; ; – after AD 119) was a Greek Middle Platonist philosopher, historian, biographer, essayist, and priest at the Temple of Apollo in Delphi. He is known primarily for his ''P ...
stated that Seleucus was the first to prove the heliocentric system through reasoning. In the 3rd century BCE, the Greek mathematician
Archimedes of Syracuse Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
( el, Ἀρχιμήδης (287–212 BCE) – generally considered to be the greatest mathematician of antiquity and one of the greatest of all time – laid the foundations of
hydrostatics Fluid statics or hydrostatics is the branch of fluid mechanics that studies the condition of the equilibrium of a floating body and submerged body " fluids at hydrostatic equilibrium and the pressure in a fluid, or exerted by a fluid, on an imm ...
,
statics Statics is the branch of classical mechanics that is concerned with the analysis of force and torque (also called moment) acting on physical systems that do not experience an acceleration (''a''=0), but rather, are in static equilibrium with ...
and calculated the underlying mathematics of the
lever A lever is a simple machine consisting of a beam or rigid rod pivoted at a fixed hinge, or ''fulcrum''. A lever is a rigid body capable of rotating on a point on itself. On the basis of the locations of fulcrum, load and effort, the lever is div ...
. A leading scientist of classical antiquity, Archimedes also developed elaborate systems of pulleys to move large objects with a minimum of effort. The
Archimedes' screw The Archimedes screw, also known as the Archimedean screw, hydrodynamic screw, water screw or Egyptian screw, is one of the earliest hydraulic machines. Using Archimedes screws as water pumps (Archimedes screw pump (ASP) or screw pump) dates back ...
underpins modern hydroengineering, and his machines of war helped to hold back the armies of Rome in the
First Punic War The First Punic War (264–241 BC) was the first of three wars fought between Rome and Carthage, the two main powers of the western Mediterranean in the early 3rd century BC. For 23 years, in the longest continuous conflict and grea ...
. Archimedes even tore apart the arguments of Aristotle and his metaphysics, pointing out that it was impossible to separate mathematics and nature and proved it by converting mathematical theories into practical inventions. Furthermore, in his work ''
On Floating Bodies ''On Floating Bodies'' ( el, Περὶ τῶν ἐπιπλεόντων σωμάτων) is a Greek-language work consisting of two books written by Archimedes of Syracuse (287 – c. 212 BC), one of the most important mathematicians, physicis ...
'', around 250 BCE, Archimedes developed the law of
buoyancy Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the p ...
, also known as
Archimedes' principle Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. Archimede ...
. In mathematics, Archimedes used the method of exhaustion to calculate the area under the arc of a
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descript ...
with the summation of an infinite series, and gave a remarkably accurate approximation of pi. He also defined the spiral bearing his name, formulae for the
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
s of surfaces of revolution and an ingenious system for expressing very large numbers. He also developed the principles of equilibrium states and centers of gravity, ideas that would influence the well known scholars, Galileo, and Newton.
Hipparchus Hipparchus (; el, Ἵππαρχος, ''Hipparkhos'';  BC) was a Greek astronomer, geographer, and mathematician. He is considered the founder of trigonometry, but is most famous for his incidental discovery of the precession of the equi ...
(190–120 BCE), focusing on astronomy and mathematics, used sophisticated geometrical techniques to map the motion of the stars and
planet A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a you ...
s, even predicting the times that
Solar eclipse A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of the Earth, totally or partially. Such an alignment occurs during an eclipse season, approximately every six month ...
s would happen. He added calculations of the distance of the Sun and Moon from the Earth, based upon his improvements to the observational instruments used at that time. Another of the most famous of the early physicists was
Ptolemy Claudius Ptolemy (; grc-gre, Πτολεμαῖος, ; la, Claudius Ptolemaeus; AD) was a mathematician, astronomer, astrologer, geographer, and music theorist, who wrote about a dozen scientific treatises, three of which were of importanc ...
(90–168 CE), one of the leading minds during the time of the
Roman Empire The Roman Empire ( la, Imperium Romanum ; grc-gre, Βασιλεία τῶν Ῥωμαίων, Basileía tôn Rhōmaíōn) was the post-Republican period of ancient Rome. As a polity, it included large territorial holdings around the Mediterr ...
. Ptolemy was the author of several scientific treatises, at least three of which were of continuing importance to later Islamic and European science. The first is the astronomical treatise now known as the ''
Almagest The ''Almagest'' is a 2nd-century Greek-language mathematical and astronomical treatise on the apparent motions of the stars and planetary paths, written by Claudius Ptolemy ( ). One of the most influential scientific texts in history, it canoni ...
'' (in Greek, Ἡ Μεγάλη Σύνταξις, "The Great Treatise", originally Μαθηματικὴ Σύνταξις, "Mathematical Treatise"). The second is the ''
Geography Geography (from Greek: , ''geographia''. Combination of Greek words ‘Geo’ (The Earth) and ‘Graphien’ (to describe), literally "earth description") is a field of science devoted to the study of the lands, features, inhabitants, and ...
'', which is a thorough discussion of the geographic knowledge of the
Greco-Roman world The Greco-Roman civilization (; also Greco-Roman culture; spelled Graeco-Roman in the Commonwealth), as understood by modern scholars and writers, includes the geographical regions and countries that culturally—and so historically—were di ...
. Much of the accumulated knowledge of the ancient world was lost. Even of the works of the better known thinkers, few fragments survived. Although he wrote at least fourteen books, almost nothing of Hipparchus' direct work survived. Of the 150 reputed Aristotelian works, only 30 exist, and some of those are "little more than lecture notes".


India and China

Important physical and mathematical traditions also existed in ancient Chinese and Indian sciences. In
Indian philosophy Indian philosophy refers to philosophical traditions of the Indian subcontinent. A traditional Hindu classification divides āstika and nāstika schools of philosophy, depending on one of three alternate criteria: whether it believes the Veda ...
, Maharishi
Kanada Kanada may refer to: *Kanada (philosopher), the Hindu sage who founded the philosophy of Vaisheshika *Kanada (family of ragas), a group of ragas in Hindustani music *Kanada (surname) *Kanada Station, train station in Fukuoka, Japan *Kannada, one of ...
was the first to systematically develop a theory of atomism around 200 BCE though some authors have allotted him an earlier era in the 6th century BCE. It was further elaborated by the Buddhist atomists
Dharmakirti Dharmakīrti (fl. c. 6th or 7th century; Tibetan: ཆོས་ཀྱི་གྲགས་པ་; Wylie: ''chos kyi grags pa''), was an influential Indian Buddhist philosopher who worked at Nālandā.Tom Tillemans (2011)Dharmakirti Stanford ...
and
Dignāga Dignāga (a.k.a. ''Diṅnāga'', c. 480 – c. 540 CE) was an Indian Buddhist scholar and one of the Buddhist founders of Indian logic (''hetu vidyā''). Dignāga's work laid the groundwork for the development of deductive logic in India and cr ...
during the 1st millennium CE.
Pakudha Kaccayana was an Indian teacher and philosopher who lived around the 6th century BCE, contemporaneous with Mahavira and the Buddha. He was an atomist who believed in atomism which believed that everything is made of seven eternal elements – earth, wate ...
, a 6th-century BCE Indian philosopher and contemporary of
Gautama Buddha Siddhartha Gautama, most commonly referred to as the Buddha, was a wandering ascetic and religious teacher who lived in South Asia during the 6th or 5th century BCE and founded Buddhism. According to Buddhist tradition, he was born in Lu ...
, had also propounded ideas about the atomic constitution of the material world. These philosophers believed that other elements (except ether) were physically palpable and hence comprised minuscule particles of matter. The last minuscule particle of matter that could not be subdivided further was termed Parmanu. These philosophers considered the atom to be indestructible and hence eternal. The Buddhists thought atoms to be minute objects unable to be seen to the naked eye that come into being and vanish in an instant. The
Vaisheshika Vaisheshika or Vaiśeṣika ( sa, वैशेषिक) is one of the six schools of Indian philosophy (Vedic systems) from ancient India. In its early stages, the Vaiśeṣika was an independent philosophy with its own metaphysics, epistemolog ...
school of philosophers believed that an atom was a mere point in
space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
. It was also first to depict relations between motion and force applied. Indian theories about the atom are greatly abstract and enmeshed in philosophy as they were based on logic and not on personal experience or experimentation. In
Indian astronomy Astronomy has long history in Indian subcontinent stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley civilisation or earlier. Astronomy later developed as a dis ...
,
Aryabhata Aryabhata (ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the ''Aryabhatiya'' (which ...
's ''
Aryabhatiya ''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Sanskrit astronomical treatise, is the ''magnum opus'' and only known surviving work of the 5th century Indian mathematician Aryabhata. Philosopher of astronomy Roger Billard estimates that th ...
'' (499 CE) proposed the
Earth's rotation Earth's rotation or Earth's spin is the rotation of planet Earth around its own Rotation around a fixed axis, axis, as well as changes in the orientation (geometry), orientation of the rotation axis in space. Earth rotates eastward, in retrograd ...
, while
Nilakantha Somayaji Keļallur Nilakantha Somayaji (14 June 1444 – 1544), also referred to as Keļallur Comatiri, was a major mathematician and astronomer of the Kerala school of astronomy and mathematics. One of his most influential works was the comprehens ...
(1444–1544) of the
Kerala school of astronomy and mathematics The Kerala school of astronomy and mathematics or the Kerala school was a school of Indian mathematics, mathematics and Indian astronomy, astronomy founded by Madhava of Sangamagrama in Kingdom of Tanur, Tirur, Malappuram district, Malappuram, K ...
proposed a semi-heliocentric model resembling the
Tychonic system The Tychonic system (or Tychonian system) is a model of the Universe published by Tycho Brahe in the late 16th century, which combines what he saw as the mathematical benefits of the Copernican system with the philosophical and "physical" bene ...
. The study of
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
in
Ancient China The earliest known written records of the history of China date from as early as 1250 BC, from the Shang dynasty (c. 1600–1046 BC), during the reign of king Wu Ding. Ancient historical texts such as the '' Book of Documents'' (early chapte ...
dates back to the 4th century BCE. (in the ''Book of the Devil Valley Master''), A main contributor to this field was
Shen Kuo Shen Kuo (; 1031–1095) or Shen Gua, courtesy name Cunzhong (存中) and pseudonym Mengqi (now usually given as Mengxi) Weng (夢溪翁),Yao (2003), 544. was a Chinese polymathic scientist and statesman of the Song dynasty (960–1279). Shen wa ...
(1031–1095), a
polymath A polymath ( el, πολυμαθής, , "having learned much"; la, homo universalis, "universal human") is an individual whose knowledge spans a substantial number of subjects, known to draw on complex bodies of knowledge to solve specific pro ...
and statesman who was the first to describe the magnetic-needle compass used for navigation, as well as establishing the concept of
true north True north (also called geodetic north or geographic north) is the direction along Earth's surface towards the geographic North Pole or True North Pole. Geodetic north differs from ''magnetic'' north (the direction a compass points toward the ...
. In optics, Shen Kuo independently developed a
camera obscura A camera obscura (; ) is a darkened room with a aperture, small hole or lens at one side through which an image is 3D projection, projected onto a wall or table opposite the hole. ''Camera obscura'' can also refer to analogous constructions su ...
.
Joseph Needham Noel Joseph Terence Montgomery Needham (; 9 December 1900 – 24 March 1995) was a British biochemist, historian of science and sinologist known for his scientific research and writing on the history of Chinese science and technology, in ...
, Volume 4, Part 1, 98.


Islamic world

In the 7th to 15th centuries, scientific progress occurred in the Muslim world. Many classic works in
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
n,
Assyria Assyria (Neo-Assyrian cuneiform: , romanized: ''māt Aššur''; syc, ܐܬܘܪ, ʾāthor) was a major ancient Mesopotamian civilization which existed as a city-state at times controlling regional territories in the indigenous lands of the A ...
n, Sassanian (Persian) and
Greek Greek may refer to: Greece Anything of, from, or related to Greece, a country in Southern Europe: *Greeks, an ethnic group. *Greek language, a branch of the Indo-European language family. **Proto-Greek language, the assumed last common ancestor ...
, including the works of
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of phil ...
, were translated into
Arabic Arabic (, ' ; , ' or ) is a Semitic languages, Semitic language spoken primarily across the Arab world.Semitic languages: an international handbook / edited by Stefan Weninger; in collaboration with Geoffrey Khan, Michael P. Streck, Janet C ...
. Important contributions were made by
Ibn al-Haytham Ḥasan Ibn al-Haytham, Latinized as Alhazen (; full name ; ), was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq.For the description of his main fields, see e.g. ("He is one of the prin ...
(965–1040), an
Arab The Arabs (singular: Arab; singular ar, عَرَبِيٌّ, DIN 31635: , , plural ar, عَرَب, DIN 31635: , Arabic pronunciation: ), also known as the Arab people, are an ethnic group mainly inhabiting the Arab world in Western Asia, ...
scientist, considered to be a founder of modern
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
. Ptolemy and Aristotle theorised that light either shone from the eye to illuminate objects or that "forms" emanated from objects themselves, whereas al-Haytham (known by the Latin name "Alhazen") suggested that light travels to the eye in rays from different points on an object. The works of Ibn al-Haytham and
Abū Rayhān Bīrūnī Abu Rayhan Muhammad ibn Ahmad al-Biruni (973 – after 1050) commonly known as al-Biruni, was a Khwarazmian Iranian in scholar and polymath during the Islamic Golden Age. He has been called variously the "founder of Indology", "Father of Co ...
(973–1050), a Persian scientist, eventually passed on to Western Europe where they were studied by scholars such as
Roger Bacon Roger Bacon (; la, Rogerus or ', also '' Rogerus''; ), also known by the scholastic accolade ''Doctor Mirabilis'', was a medieval English philosopher and Franciscan friar who placed considerable emphasis on the study of nature through empiri ...
and
Witelo Vitello ( pl, Witelon; german: Witelo; – 1280/1314) was a friar, theologian, natural philosopher and an important figure in the history of philosophy in Poland. Name Vitello's name varies with some sources. In earlier publications he was quo ...
. Ibn al-Haytham and Biruni were early proponents of the
scientific method The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century (with notable practitioners in previous centuries; see the article history of scientific m ...
. Ibn al-Haytham is considered to be by some the "father of the modern scientific method" due to his emphasis on experimental data and
reproducibility Reproducibility, also known as replicability and repeatability, is a major principle underpinning the scientific method. For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a ...
of its results. The earliest methodical approach to
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
s in the modern sense is visible in the works of Ibn al-Haytham, who introduced an inductive-experimental method for achieving results. Bīrūnī introduced early scientific methods for several different fields of
inquiry An inquiry (also spelled as enquiry in British English) is any process that has the aim of augmenting knowledge, resolving doubt, or solving a problem. A theory of inquiry is an account of the various types of inquiry and a treatment of the ...
during the 1020s and 1030s, including an early experimental method for
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects r ...
.Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in : Biruni's methodology resembled the modern scientific method, particularly in his emphasis on repeated experimentation.
Ibn Sīnā Ibn Sina ( fa, ابن سینا; 980 – June 1037 CE), commonly known in the West as Avicenna (), was a Persian polymath who is regarded as one of the most significant physicians, astronomers, philosophers, and writers of the Islamic ...
(980–1037), known as "Avicenna", was a polymath from
Bukhara Bukhara (Uzbek language, Uzbek: /, ; tg, Бухоро, ) is the List of cities in Uzbekistan, seventh-largest city in Uzbekistan, with a population of 280,187 , and the capital of Bukhara Region. People have inhabited the region around Bukhara ...
(in present-day
Uzbekistan Uzbekistan (, ; uz, Ozbekiston, italic=yes / , ; russian: Узбекистан), officially the Republic of Uzbekistan ( uz, Ozbekiston Respublikasi, italic=yes / ; russian: Республика Узбекистан), is a doubly landlocked cou ...
) responsible for important contributions to physics, optics, philosophy and
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...
. He published his theory of
motion In physics, motion is the phenomenon in which an object changes its position with respect to time. Motion is mathematically described in terms of displacement, distance, velocity, acceleration, speed and frame of reference to an observer and mea ...
in '' Book of Healing'' (1020), where he argued that an impetus is imparted to a projectile by the thrower, and believed that it was a temporary virtue that would decline even in a vacuum. He viewed it as persistent, requiring external forces such as
air resistance In fluid dynamics, drag (sometimes called air resistance, a type of friction, or fluid resistance, another type of friction or fluid friction) is a force acting opposite to the relative motion of any object moving with respect to a surrounding flu ...
to dissipate it. Ibn Sina made a distinction between 'force' and 'inclination' (called "mayl"), and argued that an object gained mayl when the object is in opposition to its natural motion. He concluded that continuation of motion is attributed to the inclination that is transferred to the object, and that object will be in motion until the mayl is spent. He also claimed that projectile in a vacuum would not stop unless it is acted upon. This conception of motion is consistent with
Newton's first law of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in motion ...
,
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
, which states that an object in motion will stay in motion unless it is acted on by an external force. This idea which dissented from the Aristotelian view was later described as " impetus" by
John Buridan Jean Buridan (; Latin: ''Johannes Buridanus''; – ) was an influential 14th-century French philosopher. Buridan was a teacher in the faculty of arts at the University of Paris for his entire career who focused in particular on logic and the wo ...
, who was influenced by Ibn Sina's ''Book of Healing''.Sayili, Aydin. "Ibn Sina and Buridan on the Motion the Projectile". Annals of the New York Academy of Sciences vol. 500(1). p.477-482. Hibat Allah Abu'l-Barakat al-Baghdaadi (c. 1080-1165) adopted and modified Ibn Sina's theory on
projectile motion Projectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particul ...
. In his ''Kitab al-Mu'tabar'', Abu'l-Barakat stated that the mover imparts a violent inclination (''mayl qasri'') on the moved and that this diminishes as the moving object distances itself from the mover. He also proposed an explanation of the
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by the ...
of falling bodies by the accumulation of successive increments of
power Power most often refers to: * Power (physics), meaning "rate of doing work" ** Engine power, the power put out by an engine ** Electric power * Power (social and political), the ability to influence people or events ** Abusive power Power may a ...
with successive increments of
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
. According to
Shlomo Pines Shlomo Pines (; ; August 5, 1908 in Charenton-le-Pont – January 9, 1990 in Jerusalem) was an Israeli scholar of Jewish and Islamic philosophy, best known for his English translation of Maimonides' ''Guide of the Perplexed''. Biography Pines wa ...
, al-Baghdaadi's theory of motion was "the oldest negation of Aristotle's fundamental dynamic law amely, that a constant force produces a uniform motion nd is thus ananticipation in a vague fashion of the fundamental law of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
amely, that a force applied continuously produces acceleration" Jean Buridan and
Albert of Saxony en, Frederick Augustus Albert Anthony Ferdinand Joseph Charles Maria Baptist Nepomuk William Xavier George Fidelis , image = Albert of Saxony by Nicola Perscheid c1900.jpg , image_size = , caption = Photograph by Nicola Persch ...
later referred to Abu'l-Barakat in explaining that the acceleration of a falling body is a result of its increasing impetus.
Ibn Bajjah Abū Bakr Muḥammad ibn Yaḥyà ibn aṣ-Ṣā’igh at-Tūjībī ibn Bājja ( ar, أبو بكر محمد بن يحيى بن الصائغ التجيبي بن باجة), best known by his Latinised name Avempace (;  – 1138), was an A ...
(c. 1085–1138), known as "Avempace" in Europe, proposed that for every force there is always a
reaction Reaction may refer to a process or to a response to an action, event, or exposure: Physics and chemistry *Chemical reaction *Nuclear reaction *Reaction (physics), as defined by Newton's third law *Chain reaction (disambiguation). Biology and me ...
force. Ibn Bajjah was a critic of Ptolemy and he worked on creating a new theory of velocity to replace the one theorized by Aristotle. Two future philosophers supported the theories Avempace created, known as Avempacean dynamics. These philosophers were
Thomas Aquinas Thomas Aquinas, OP (; it, Tommaso d'Aquino, lit=Thomas of Aquino; 1225 – 7 March 1274) was an Italian Dominican friar and priest who was an influential philosopher, theologian and jurist in the tradition of scholasticism; he is known wi ...
, a Catholic priest, and
John Duns Scotus John Duns Scotus ( – 8 November 1308), commonly called Duns Scotus ( ; ; "Duns the Scot"), was a Scottish Catholic priest and Franciscan friar, university professor, philosopher, and theologian. He is one of the four most important ...
.
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
went on to adopt Avempace's formula "that the velocity of a given object is the difference of the motive power of that object and the resistance of the medium of motion".
Nasir al-Din al-Tusi Muhammad ibn Muhammad ibn al-Hasan al-Tūsī ( fa, محمد ابن محمد ابن حسن طوسی 18 February 1201 – 26 June 1274), better known as Nasir al-Din al-Tusi ( fa, نصیر الدین طوسی, links=no; or simply Tusi in the West ...
(1201–1274), a Persian astronomer and mathematician who died in Baghdad introduced the
Tusi couple The Tusi couple is a mathematical device in which a small circle rotates inside a larger circle twice the diameter of the smaller circle. Rotations of the circles cause a point on the circumference of the smaller circle to oscillate back and fort ...
. Copernicus later drew heavily on the work of al-Din al-Tusi and his students, but without acknowledgment.


Medieval Europe

Awareness of ancient works re-entered the West through translations from Arabic to Latin. Their re-introduction, combined with Judeo-Islamic theological commentaries, had a great influence on Medieval philosophers such as
Thomas Aquinas Thomas Aquinas, OP (; it, Tommaso d'Aquino, lit=Thomas of Aquino; 1225 – 7 March 1274) was an Italian Dominican friar and priest who was an influential philosopher, theologian and jurist in the tradition of scholasticism; he is known wi ...
. Scholastic European scholars, who sought to reconcile the philosophy of the ancient classical philosophers with
Christian theology Christian theology is the theology of Christianity, Christian belief and practice. Such study concentrates primarily upon the texts of the Old Testament and of the New Testament, as well as on Christian tradition. Christian theology, theologian ...
, proclaimed Aristotle the greatest thinker of the ancient world. In cases where they didn't directly contradict the Bible, Aristotelian physics became the foundation for the physical explanations of the European Churches. Quantification became a core element of medieval physics. Based on Aristotelian physics, Scholastic physics described things as moving according to their essential nature. Celestial objects were described as moving in circles, because perfect circular motion was considered an innate property of objects that existed in the uncorrupted realm of the
celestial spheres The celestial spheres, or celestial orbs, were the fundamental entities of the cosmology, cosmological models developed by Plato, Eudoxus of Cnidus, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the diurnal m ...
. The
theory of impetus The theory of impetus was an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. It was introduced by John Philoponus in the 6th century, and elaborated by Nur ad-Din al-Bitruj ...
, the ancestor to the concepts of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
, was developed along similar lines by medieval philosophers such as
John Philoponus John Philoponus (Greek: ; ; c. 490 – c. 570), also known as John the Grammarian or John of Alexandria, was a Byzantine Greek philologist, Aristotelian commentator, Christian theologian and an author of a considerable number of philosophical tre ...
and
Jean Buridan Jean Buridan (; Latin: ''Johannes Buridanus''; – ) was an influential 14th-century French people, French Philosophy, philosopher. Buridan was a teacher in the Faculty (division)#Faculty of Art, faculty of arts at the University of Paris for hi ...
. Motions below the lunar sphere were seen as imperfect, and thus could not be expected to exhibit consistent motion. More idealized motion in the "sublunary" realm could only be achieved through
artifice ''Artifice'' was a nonprofit literary magazine based in Chicago, Illinois, that existed between 2009 and 2017. History and profile ''Artifice'' was started in 2009. It was co-founded by Rebekah Silverman, who served as Managing Editor, and James ...
, and prior to the 17th century, many did not view artificial experiments as a valid means of learning about the natural world. Physical explanations in the sublunary realm revolved around tendencies. Stones contained the element earth, and earthly objects tended to move in a straight line toward the centre of the earth (and the universe in the Aristotelian geocentric view) unless otherwise prevented from doing so.


Scientific revolution

During the 16th and 17th centuries, a large advancement of scientific progress known as the
Scientific revolution The Scientific Revolution was a series of events that marked the emergence of modern science during the early modern period, when developments in mathematics, physics, astronomy, biology (including human anatomy) and chemistry transfo ...
took place in Europe. Dissatisfaction with older philosophical approaches had begun earlier and had produced other changes in society, such as the
Protestant Reformation The Reformation (alternatively named the Protestant Reformation or the European Reformation) was a major movement within Western Christianity in 16th-century Europe that posed a religious and political challenge to the Catholic Church and in ...
, but the revolution in science began when
natural philosophers Natural philosophy or philosophy of nature (from Latin ''philosophia naturalis'') is the philosophical study of physics, that is, nature and the physical universe. It was dominant before the development of modern science. From the ancient wor ...
began to mount a sustained attack on the Scholastic philosophical programme and supposed that mathematical descriptive schemes adopted from such fields as mechanics and astronomy could actually yield universally valid characterizations of motion and other concepts.


Nicolaus Copernicus

A breakthrough in
astronomy Astronomy () is a natural science that studies astronomical object, celestial objects and phenomena. It uses mathematics, physics, and chemistry in order to explain their origin and chronology of the Universe, evolution. Objects of interest ...
was made by Polish astronomer
Nicolaus Copernicus Nicolaus Copernicus (; pl, Mikołaj Kopernik; gml, Niklas Koppernigk, german: Nikolaus Kopernikus; 19 February 1473 – 24 May 1543) was a Renaissance polymath, active as a mathematician, astronomer, and Catholic Church, Catholic cano ...
(1473–1543) when, in 1543, he gave strong arguments for the
heliocentric model Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
, ostensibly as a means to render tables charting planetary motion more accurate and to simplify their production. In heliocentric models of the Solar system, the Earth orbits the Sun along with other bodies in Earth's
galaxy A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
, a contradiction according to the Greek-Egyptian astronomer Ptolemy (2nd century CE; see above), whose system placed the Earth at the center of the Universe and had been accepted for over 1,400 years. The Greek astronomer
Aristarchus of Samos Aristarchus of Samos (; grc-gre, Ἀρίσταρχος ὁ Σάμιος, ''Aristarkhos ho Samios''; ) was an ancient Greek astronomer An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or ...
(c.310 – c.230 BCE) had suggested that the Earth revolves around the Sun, but Copernicus' reasoning led to lasting general acceptance of this "revolutionary" idea. Copernicus' book presenting the theory (''
De revolutionibus orbium coelestium ''De revolutionibus orbium coelestium'' (English translation: ''On the Revolutions of the Heavenly Spheres'') is the seminal work on the heliocentric theory of the astronomer Nicolaus Copernicus (1473–1543) of the Polish Renaissance. The book, ...
'', "On the Revolutions of the Celestial Spheres") was published just before his death in 1543 and, as it is now generally considered to mark the beginning of modern astronomy, is also considered to mark the beginning of the Scientific revolution. Copernicus' new perspective, along with the accurate observations made by
Tycho Brahe Tycho Brahe ( ; born Tyge Ottesen Brahe; generally called Tycho (14 December 154624 October 1601) was a Danish astronomer, known for his comprehensive astronomical observations, generally considered to be the most accurate of his time. He was k ...
, enabled German astronomer
Johannes Kepler Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws ...
(1571–1630) to formulate his laws regarding planetary motion that remain in use today.


Galileo Galilei

The Italian mathematician, astronomer, and physicist
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
(1564–1642) was famous for his support for Copernicanism, his astronomical discoveries, empirical experiments and his improvement of the telescope. As a mathematician, Galileo's role in the
university A university () is an institution of higher (or tertiary) education and research which awards academic degrees in several academic disciplines. Universities typically offer both undergraduate and postgraduate programs. In the United States, t ...
culture of his era was subordinated to the three major topics of study:
law Law is a set of rules that are created and are enforceable by social or governmental institutions to regulate behavior,Robertson, ''Crimes against humanity'', 90. with its precise definition a matter of longstanding debate. It has been vario ...
,
medicine Medicine is the science and practice of caring for a patient, managing the diagnosis, prognosis, prevention, treatment, palliation of their injury or disease, and promoting their health. Medicine encompasses a variety of health care pract ...
, and
theology Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is taught as an academic discipline, typically in universities and seminaries. It occupies itself with the unique content of analyzing the ...
(which was closely allied to philosophy). Galileo, however, felt that the descriptive content of the technical disciplines warranted philosophical interest, particularly because mathematical analysis of astronomical observations – notably, Copernicus' analysis of the relative motions of the Sun, Earth, Moon, and planets – indicated that philosophers' statements about the nature of the universe could be shown to be in error. Galileo also performed mechanical experiments, insisting that motion itself – regardless of whether it was produced "naturally" or "artificially" (i.e. deliberately) – had universally consistent characteristics that could be described mathematically. Galileo's early studies at the
University of Pisa The University of Pisa ( it, Università di Pisa, UniPi), officially founded in 1343, is one of the oldest universities in Europe. History The Origins The University of Pisa was officially founded in 1343, although various scholars place ...
were in medicine, but he was soon drawn to mathematics and physics. At 19, he discovered (and, subsequently, verified) the isochronal nature of the
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the ...
when, using his pulse, he timed the oscillations of a swinging lamp in Pisa's cathedral and found that it remained the same for each swing regardless of the swing's
amplitude The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplit ...
. He soon became known through his invention of a
hydrostatic balance In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. In the planetary ...
and for his treatise on the
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weight function, weighted relative position (vector), position of the distributed mass sums to zero. Thi ...
of solid bodies. While teaching at the University of Pisa (1589–92), he initiated his experiments concerning the laws of bodies in motion that brought results so contradictory to the accepted teachings of Aristotle that strong antagonism was aroused. He found that bodies do not fall with velocities proportional to their weights. The famous story in which Galileo is said to have dropped weights from the
Leaning Tower of Pisa The Leaning Tower of Pisa ( it, torre pendente di Pisa), or simply, the Tower of Pisa (''torre di Pisa'' ), is the ''bell tower, campanile'', or freestanding bell tower, of Pisa Cathedral. It is known for its nearly four-degree lean, the result ...
is apocryphal, but he did find that the path of a projectile is a
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descript ...
and is credited with conclusions that anticipated
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in moti ...
(e.g. the notion of
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
). Among these is what is now called
Galilean relativity Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his '' Dialogue Concerning the Two Chief World Systems'' using t ...
, the first precisely formulated statement about properties of space and time outside
three-dimensional geometry In mathematics, solid geometry or stereometry is the traditional name for the geometry of three-dimensional, Euclidean spaces (i.e., 3D geometry). Stereometry deals with the measurements of volumes of various solid figures (or 3D figures), inc ...
. Galileo has been called the "father of modern
observational astronomy Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical m ...
", the "father of
modern physics Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general ...
", the "father of science", and "the father of
modern science The history of science covers the development of science from ancient history, ancient times to the present. It encompasses all three major branches of science: natural science, natural, social science, social, and formal science, formal. Sc ...
". Finocchiaro (2007). According to Stephen Hawking, "Galileo, perhaps more than any other single person, was responsible for the birth of modern science." As religious orthodoxy decreed a
geocentric In astronomy, the geocentric model (also known as geocentrism, often exemplified specifically by the Ptolemaic system) is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, an ...
or Tychonic understanding of the Solar system, Galileo's support for
heliocentrism Heliocentrism (also known as the Heliocentric model) is the astronomical model in which the Earth and planets revolve around the Sun at the center of the universe. Historically, heliocentrism was opposed to geocentrism, which placed the Earth at ...
provoked controversy and he was tried by the
Inquisition The Inquisition was a group of institutions within the Catholic Church whose aim was to combat heresy, conducting trials of suspected heretics. Studies of the records have found that the overwhelming majority of sentences consisted of penances, ...
. Found "vehemently suspect of heresy", he was forced to recant and spent the rest of his life under house arrest. The contributions that Galileo made to observational astronomy include the telescopic confirmation of the
phases of Venus The phases of Venus are the variations of lighting seen on the planet's surface, similar to lunar phases. The first recorded observations of them are thought to have been telescopic observations by Galileo Galilei in 1610. Although the extreme cr ...
; his discovery, in 1609, of Jupiter's four largest moons (subsequently given the collective name of the "
Galilean moons The Galilean moons (), or Galilean satellites, are the four largest moons of Jupiter: Io, Europa, Ganymede, and Callisto. They were first seen by Galileo Galilei in December 1609 or January 1610, and recognized by him as satellites of Jupiter ...
"); and the observation and analysis of
sunspot Sunspots are phenomena on the Sun's photosphere that appear as temporary spots that are darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic flux that inhibit convection. Sun ...
s. Galileo also pursued applied science and technology, inventing, among other instruments, a military
compass A compass is a device that shows the cardinal directions used for navigation and geographic orientation. It commonly consists of a magnetized needle or other element, such as a compass card or compass rose, which can pivot to align itself with ...
. His discovery of the Jovian moons was published in 1610 and enabled him to obtain the position of mathematician and philosopher to the
Medici The House of Medici ( , ) was an Italian banking family and political dynasty that first began to gather prominence under Cosimo de' Medici, in the Republic of Florence during the first half of the 15th century. The family originated in the Muge ...
court. As such, he was expected to engage in debates with philosophers in the Aristotelian tradition and received a large audience for his own publications such as the '' Discourses and Mathematical Demonstrations Concerning Two New Sciences'' (published abroad following his arrest for the publication of ''
Dialogue Concerning the Two Chief World Systems The ''Dialogue Concerning the Two Chief World Systems'' (''Dialogo sopra i due massimi sistemi del mondo'') is a 1632 Italian-language book by Galileo Galilei comparing the Copernican system with the traditional Ptolemaic system. It was tran ...
'') and ''
The Assayer ''The Assayer'' ( it, Il Saggiatore) was a book published in Rome by Galileo Galilei in October 1623 and is generally considered to be one of the pioneering works of the scientific method, first broaching the idea that the book of nature is to be ...
''. Galileo's interest in experimenting with and formulating mathematical descriptions of motion established experimentation as an integral part of natural philosophy. This tradition, combining with the non-mathematical emphasis on the collection of "experimental histories" by philosophical reformists such as William Gilbert and
Francis Bacon Francis Bacon, 1st Viscount St Alban (; 22 January 1561 – 9 April 1626), also known as Lord Verulam, was an English philosopher and statesman who served as Attorney General and Lord Chancellor of England. Bacon led the advancement of both ...
, drew a significant following in the years leading up to and following Galileo's death, including
Evangelista Torricelli Evangelista Torricelli ( , also , ; 15 October 160825 October 1647) was an Italian physicist and mathematician, and a student of Galileo. He is best known for his invention of the barometer, but is also known for his advances in optics and work o ...
and the participants in the
Accademia del Cimento The Accademia del Cimento (Academy of Experiment), an early scientific society, was founded in Florence in 1657 by students of Galileo, Giovanni Alfonso Borelli and Vincenzo Viviani and ceased to exist about a decade later. The foundation of Acade ...
in Italy;
Marin Mersenne Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
and
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
in France;
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
in the Netherlands; and
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
and
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of ...
in England.


René Descartes

The French philosopher
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathem ...
(1596–1650) was well-connected to, and influential within, the experimental philosophy networks of the day. Descartes had a more ambitious agenda, however, which was geared toward replacing the Scholastic philosophical tradition altogether. Questioning the reality interpreted through the senses, Descartes sought to re-establish philosophical explanatory schemes by reducing all perceived phenomena to being attributable to the motion of an invisible sea of "corpuscles". (Notably, he reserved human thought and
God In monotheism, monotheistic thought, God is usually viewed as the supreme being, creator deity, creator, and principal object of Faith#Religious views, faith.Richard Swinburne, Swinburne, R.G. "God" in Ted Honderich, Honderich, Ted. (ed)''The Ox ...
from his scheme, holding these to be separate from the physical universe). In proposing this philosophical framework, Descartes supposed that different kinds of motion, such as that of planets versus that of terrestrial objects, were not fundamentally different, but were merely different manifestations of an endless chain of corpuscular motions obeying universal principles. Particularly influential were his explanations for circular astronomical motions in terms of the vortex motion of corpuscles in space (Descartes argued, in accord with the beliefs, if not the methods, of the Scholastics, that a
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
could not exist), and his explanation of
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
in terms of corpuscles pushing objects downward. Descartes, like Galileo, was convinced of the importance of mathematical explanation, and he and his followers were key figures in the development of mathematics and geometry in the 17th century. Cartesian mathematical descriptions of motion held that all mathematical formulations had to be justifiable in terms of direct physical action, a position held by Huygens and the German philosopher
Gottfried Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathem ...
, who, while following in the Cartesian tradition, developed his own philosophical alternative to Scholasticism, which he outlined in his 1714 work, ''
The Monadology The ''Monadology'' (french: La Monadologie, 1714) is one of Gottfried Leibniz's best known works of his later philosophy. It is a short text which presents, in some 90 paragraphs, a metaphysics of simple substances, or '' monads''. Text Dur ...
''. Descartes has been dubbed the 'Father of Modern Philosophy', and much subsequent
Western philosophy Western philosophy encompasses the philosophical thought and work of the Western world. Historically, the term refers to the philosophical thinking of Western culture, beginning with the ancient Greek philosophy of the pre-Socratics. The word ' ...
is a response to his writings, which are studied closely to this day. In particular, his ''
Meditations on First Philosophy ''Meditations on First Philosophy, in which the existence of God and the immortality of the soul are demonstrated'' ( la, Meditationes de Prima Philosophia, in qua Dei existentia et animæ immortalitas demonstratur) is a philosophical treatise ...
'' continues to be a standard text at most university philosophy departments. Descartes' influence in mathematics is equally apparent; the
Cartesian coordinate system A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
— allowing algebraic equations to be expressed as geometric shapes in a two-dimensional coordinate system — was named after him. He is credited as the father of
analytical geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineer ...
, the bridge between
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
and
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, important to the discovery of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
and
analysis Analysis ( : analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (38 ...
.


Christiaan Huygens

The Dutch physicist, mathematician, astronomer and inventor
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
(1629–1695) was the leading scientist in Europe between Galileo and Newton. Huygens came from a family of nobility that had an important position in the Dutch society of the 17th century; a time in which the
Dutch Republic The United Provinces of the Netherlands, also known as the (Seven) United Provinces, officially as the Republic of the Seven United Netherlands (Dutch: ''Republiek der Zeven Verenigde Nederlanden''), and commonly referred to in historiography ...
flourished economically and culturally. This period - roughly between 1588 and 1702 - of the
history of the Netherlands The history of the Netherlands is a history of seafaring people thriving in the lowland river delta on the North Sea in northwestern Europe. Records begin with the four centuries during which the region formed a militarized border zone of the Ro ...
is also referred to as the
Dutch Golden Age The Dutch Golden Age ( nl, Gouden Eeuw ) was a period in the history of the Netherlands, roughly spanning the era from 1588 (the birth of the Dutch Republic) to 1672 (the Rampjaar, "Disaster Year"), in which Dutch trade, science, and Dutch art, ...
, an era during the Scientific Revolution when Dutch science was among the most acclaimed in Europe. At this time, intellectuals and scientists like
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathem ...
,
Baruch Spinoza Baruch (de) Spinoza (born Bento de Espinosa; later as an author and a correspondent ''Benedictus de Spinoza'', anglicized to ''Benedict de Spinoza''; 24 November 1632 – 21 February 1677) was a Dutch philosopher of Portuguese-Jewish origin, b ...
,
Pierre Bayle Pierre Bayle (; 18 November 1647 – 28 December 1706) was a French philosopher, author, and lexicographer. A Huguenot, Bayle fled to the Dutch Republic in 1681 because of religious persecution in France. He is best known for his '' Historica ...
,
Antonie van Leeuwenhoek Antonie Philips van Leeuwenhoek ( ; ; 24 October 1632 – 26 August 1723) was a Dutch microbiologist and microscopist in the Golden Age of Dutch science and technology. A largely self-taught man in science, he is commonly known as " the ...
,
John Locke John Locke (; 29 August 1632 – 28 October 1704) was an English philosopher and physician, widely regarded as one of the most influential of Age of Enlightenment, Enlightenment thinkers and commonly known as the "father of liberalism ...
and
Hugo Grotius Hugo Grotius (; 10 April 1583 – 28 August 1645), also known as Huig de Groot () and Hugo de Groot (), was a Dutch humanist, diplomat, lawyer, theologian, jurist, poet and playwright. A teenage intellectual prodigy, he was born in Delft ...
resided in the Netherlands. It was in this intellectual environment where Christiaan Huygens grew up. Christiaan's father,
Constantijn Huygens Sir Constantijn Huygens, Lord of Zuilichem ( , , ; 4 September 159628 March 1687), was a Dutch Golden Age poet and composer. He was also secretary to two Princes of Orange: Frederick Henry and William II, and the father of the scientist C ...
, was, apart from an important poet, the secretary and diplomat for the Princes of Orange. He knew many scientists of his time because of his contacts and intellectual interests, including
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathem ...
and
Marin Mersenne Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
, and it was because of these contacts that Christiaan Huygens became aware of their work. Especially Descartes, whose mechanistic philosophy was going to have a huge influence on Huygens' own work. Descartes was later impressed by the skills Christiaan Huygens showed in geometry, as was Mersenne, who christened him "the new Archimedes" (which led Constantijn to refer to his son as "my little Archimedes"). A child prodigy, Huygens began his correspondence with Marin Mersenne when he was 17 years old. Huygens became interested in
games of chance A game of chance is in contrast with a game of skill. It is a game whose outcome is strongly influenced by some randomizing device. Common devices used include dice, spinning tops, playing cards, roulette wheels, or numbered balls drawn from ...
when he encountered the work of
Fermat Pierre de Fermat (; between 31 October and 6 December 1607 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he i ...
,
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
and
Girard Desargues Girard Desargues (; 21 February 1591 – September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues on the Moon are ...
. It was
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
who encourages him to write ''Van Rekeningh in Spelen van Gluck'', which Frans van Schooten translated and published as ''De Ratiociniis in Ludo Aleae'' in 1657. The book is the earliest known scientific treatment of the subject, and at the time the most coherent presentation of a mathematical approach to games of chance. Two years later Huygens derived geometrically the now standard formulae in classical mechanics for the centripetal- and
centrifugal force In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is paralle ...
in his work ''De vi Centrifuga'' (1659). Around the same time Huygens' research in
horology Horology (; related to Latin '; ; , interfix ''-o-'', and suffix ''-logy''), . is the study of the measurement of time. Clocks, watches, clockwork, sundials, hourglasses, clepsydras, timers, time recorders, marine chronometers, and atomic cl ...
resulted in the invention of the
pendulum clock A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is a harmonic oscillator: It swings back and forth in a precise time interval dependent on it ...
; a breakthrough in timekeeping and the most accurate timekeeper for almost 300 years. The theoretical research of the way the pendulum works eventually led to the publication of one of his most important achievements: the
Horologium Oscillatorium (English: ''The Pendulum Clock: or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks'') is a book published by Dutch physicist Christiaan Huygens in 1673 and his major work on pendulums and horology. It is regarde ...
. This work was published in 1673 and became one of the three most important 17th century works on mechanics (the other two being
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
’s '' Discourses and Mathematical Demonstrations Relating to Two New Sciences'' (1638) and
Newton Newton most commonly refers to: * Isaac Newton (1642–1726/1727), English scientist * Newton (unit), SI unit of force named after Isaac Newton Newton may also refer to: Arts and entertainment * ''Newton'' (film), a 2017 Indian film * Newton ( ...
’s ''
Philosophiæ Naturalis Principia Mathematica (English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and ...
'' (1687)). The ''Horologium Oscillatorium'' is the first modern treatise in which a physical problem (the accelerated motion of a falling body) is idealized by a set of parameters then analyzed mathematically and constitutes one of the seminal works of
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical s ...
.Bruce, I. (2007).
Christian Huygens: Horologium Oscillatorium
'. Translated and annotated by Ian Bruce.
It is for this reason, Huygens has been called the first
theoretical physicist Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimen ...
and one of the founders of modern
mathematical physics Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and t ...
.Dijksterhuis, F.J. (2008) Stevin, Huygens and the Dutch republic. ''Nieuw archief voor wiskunde'', ''5'', pp. 100–10

/ref> Huygens' ''Horologium Oscillatorium'' had a tremendous influence on the history of physics, especially on the work of
Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the grea ...
, who greatly admired the work. For instance, the laws Huygens described in the ''Horologium Oscillatorium'' are structurally the same as Newton's first two Newton's laws of motion, laws of motion. Five years after the publication of his ''Horologium Oscillatorium'', Huygens described his
wave theory of light In physics, physical optics, or wave optics, is the branch of optics that studies Interference (wave propagation), interference, diffraction, Polarization (waves), polarization, and other phenomena for which the ray approximation of geometric opti ...
. Though proposed in 1678, it wasn't published until 1690 in his
Traité de la Lumière ''Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction'' (french: Traité de la Lumière'': Où Sont Expliquées les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction'') is a book ...
. His mathematical theory of light was initially rejected in favour of Newton's corpuscular theory of light, until
Augustin-Jean Fresnel Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Isaac Newton, Newton's co ...
adopted Huygens' principle to give a complete explanation of the rectilinear propagation and diffraction effects of light in 1821. Today this principle is known as the
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Dutch physicist Christiaan Huygens and French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary wavelets emanating ...
. As an astronomer, Huygens began grinding lenses with his brother Constantijn jr. to build telescopes for astronomical research. He was the first to identify the rings of
Saturn Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine and a half times that of Earth. It has only one-eighth the average density of Earth; h ...
as "a thin, flat ring, nowhere touching, and inclined to the ecliptic," and discovered the first of Saturn's moons, Titan, using a
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens (optics), lens as its objective (optics), objective to form an image (also referred to a dioptrics, dioptric telescope). The refracting telescope d ...
. Apart from the many important discoveries Huygens made in physics and astronomy, and his inventions of ingenious devices, he was also the first who brought mathematical rigor to the description of physical phenomena. Because of this, and the fact that he developed institutional frameworks for scientific research on the continent, he has been referred to as "the leading actor in ‘the making of science in Europe’"


Isaac Newton

The late 17th and early 18th centuries saw the achievements of
Cambridge University , mottoeng = Literal: From here, light and sacred draughts. Non literal: From this place, we gain enlightenment and precious knowledge. , established = , other_name = The Chancellor, Masters and Schola ...
physicist and mathematician
Sir Isaac Newton Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the great ...
(1642-1727). Newton, a fellow of the Royal Society of England, combined his own discoveries in mechanics and astronomy to earlier ones to create a single system for describing the workings of the universe. Newton formulated three laws of motion which formulated the relationship between motion and objects and also the law of universal gravitation, the latter of which could be used to explain the behavior not only of falling bodies on the earth but also planets and other celestial bodies. To arrive at his results, Newton invented one form of an entirely new branch of mathematics:
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
(also invented independently by
Gottfried Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mathem ...
), which was to become an essential tool in much of the later development in most branches of physics. Newton's findings were set forth in his ''
Philosophiæ Naturalis Principia Mathematica (English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and ...
'' ("Mathematical Principles of Natural Philosophy"), the publication of which in 1687 marked the beginning of the modern period of mechanics and astronomy. Newton was able to refute the Cartesian mechanical tradition that all motions should be explained with respect to the immediate force exerted by corpuscles. Using his three laws of motion and law of universal gravitation, Newton removed the idea that objects followed paths determined by natural shapes and instead demonstrated that not only regularly observed paths, but all the future motions of any body could be deduced mathematically based on knowledge of their existing motion, their
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
, and the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
s acting upon them. However, observed celestial motions did not precisely conform to a Newtonian treatment, and Newton, who was also deeply interested in
theology Theology is the systematic study of the nature of the divine and, more broadly, of religious belief. It is taught as an academic discipline, typically in universities and seminaries. It occupies itself with the unique content of analyzing the ...
, imagined that God intervened to ensure the continued stability of the solar system. Newton's principles (but not his mathematical treatments) proved controversial with Continental philosophers, who found his lack of
metaphysical Metaphysics is the branch of philosophy that studies the fundamental nature of reality, the first principles of being, identity and change, space and time, causality, necessity, and possibility. It includes questions about the nature of conscio ...
explanation for movement and gravitation philosophically unacceptable. Beginning around 1700, a bitter rift opened between the Continental and British philosophical traditions, which were stoked by heated, ongoing, and viciously personal disputes between the followers of Newton and Leibniz concerning priority over the analytical techniques of
calculus Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithm ...
, which each had developed independently. Initially, the Cartesian and Leibnizian traditions prevailed on the Continent (leading to the dominance of the Leibnizian calculus notation everywhere except Britain). Newton himself remained privately disturbed at the lack of a philosophical understanding of gravitation while insisting in his writings that none was necessary to infer its reality. As the 18th century progressed, Continental natural philosophers increasingly accepted the Newtonians' willingness to forgo
ontological In metaphysics, ontology is the philosophical study of being, as well as related concepts such as existence, becoming, and reality. Ontology addresses questions like how entities are grouped into categories and which of these entities exis ...
metaphysical explanations for mathematically described motions. Newton built the first functioning
reflecting telescope A reflecting telescope (also called a reflector) is a telescope that uses a single or a combination of curved mirrors that reflect light and form an image. The reflecting telescope was invented in the 17th century by Isaac Newton as an alternati ...
and developed a theory of color, published in ''
Opticks ''Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light'' is a book by English natural philosopher Isaac Newton that was published in English in 1704 (a scholarly Latin translation appeared in 1706). (''Optick ...
'', based on the observation that a
prism Prism usually refers to: * Prism (optics), a transparent optical component with flat surfaces that refract light * Prism (geometry), a kind of polyhedron Prism may also refer to: Science and mathematics * Prism (geology), a type of sedimentary ...
decomposes white light into the many colours forming the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visual perception, visible to the human eye. Electromagnetic radiation in this range of wavelengths is called ''visible light'' or simply light. A typical human eye wil ...
. While Newton explained light as being composed of tiny particles, a rival theory of light which explained its behavior in terms of waves was presented in 1690 by
Christiaan Huygens Christiaan Huygens, Lord of Zeelhem, ( , , ; also spelled Huyghens; la, Hugenius; 14 April 1629 – 8 July 1695) was a Dutch mathematician, physicist, engineer, astronomer, and inventor, who is regarded as one of the greatest scientists of ...
. However, the belief in the mechanistic philosophy coupled with Newton's reputation meant that the wave theory saw relatively little support until the 19th century. Newton also formulated an empirical law of cooling, studied the
speed of sound The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as w ...
, investigated
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a const ...
, demonstrated the generalised binomial theorem and developed a method for approximating the roots of a function. His work on infinite series was inspired by
Simon Stevin Simon Stevin (; 1548–1620), sometimes called Stevinus, was a Flemish mathematician, scientist and music theorist. He made various contributions in many areas of science and engineering, both theoretical and practical. He also translated vario ...
's decimals. Most importantly, Newton showed that the motions of objects on Earth and of celestial bodies are governed by the same set of natural laws, which were neither capricious nor malevolent. By demonstrating the consistency between
Kepler's laws of planetary motion In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits ...
and his own theory of gravitation, Newton also removed the last doubts about heliocentrism. By bringing together all the ideas set forth during the Scientific revolution, Newton effectively established the foundation for modern society in mathematics and science.


Other achievements

Other branches of physics also received attention during the period of the Scientific revolution. William Gilbert, court physician to
Queen Elizabeth I Elizabeth I (7 September 153324 March 1603) was Queen of England and Ireland from 17 November 1558 until her death in 1603. Elizabeth was the last of the five House of Tudor monarchs and is sometimes referred to as the "Virgin Queen". El ...
, published an important work on magnetism in 1600, describing how the earth itself behaves like a giant magnet.
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the founders of ...
(1627–91) studied the behavior of gases enclosed in a chamber and formulated the gas law named for him; he also contributed to physiology and to the founding of modern chemistry. Another important factor in the scientific revolution was the rise of learned societies and academies in various countries. The earliest of these were in Italy and Germany and were short-lived. More influential were the Royal Society of England (1660) and the Academy of Sciences in France (1666). The former was a private institution in London and included such scientists as
John Wallis John Wallis (; la, Wallisius; ) was an English clergyman and mathematician who is given partial credit for the development of infinitesimal calculus. Between 1643 and 1689 he served as chief cryptographer for Parliament and, later, the royal ...
, William Brouncker,
Thomas Sydenham Thomas Sydenham (10 September 1624 – 29 December 1689) was an English physician. He was the author of ''Observationes Medicae'' which became a standard textbook of medicine for two centuries so that he became known as 'The English Hippocrate ...
,
John Mayow John Mayow FRS (1641–1679) was a chemist, physician, and physiologist who is remembered today for conducting early research into respiration and the nature of air. Mayow worked in a field that is sometimes called pneumatic chemistry. Lif ...
, and
Christopher Wren Sir Christopher Wren PRS FRS (; – ) was one of the most highly acclaimed English architects in history, as well as an anatomist, astronomer, geometer, and mathematician-physicist. He was accorded responsibility for rebuilding 52 churches ...
(who contributed not only to architecture but also to astronomy and anatomy); the latter, in Paris, was a government institution and included as a foreign member the Dutchman Huygens. In the 18th century, important royal academies were established at Berlin (1700) and at St. Petersburg (1724). The societies and academies provided the principal opportunities for the publication and discussion of scientific results during and after the scientific revolution. In 1690, James Bernoulli showed that the
cycloid In geometry, a cycloid is the curve traced by a point on a circle as it rolls along a straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette, a curve generated by a curve rolling on another curve ...
is the solution to the tautochrone problem; and the following year, in 1691,
Johann Bernoulli Johann Bernoulli (also known as Jean or John; – 1 January 1748) was a Swiss mathematician and was one of the many prominent mathematicians in the Bernoulli family. He is known for his contributions to infinitesimal calculus and educating L ...
showed that a chain freely suspended from two points will form a
catenary In physics and geometry, a catenary (, ) is the curve that an idealized hanging chain or cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, superficia ...
, the curve with the lowest possible
center of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the balance point) is the unique point where the weight function, weighted relative position (vector), position of the distributed mass sums to zero. Thi ...
available to any chain hung between two fixed points. He then showed, in 1696, that the cycloid is the solution to the
brachistochrone In physics and mathematics, a brachistochrone curve (), or curve of fastest descent, is the one lying on the plane between a point ''A'' and a lower point ''B'', where ''B'' is not directly below ''A'', on which a bead slides frictionlessly under ...
problem.


Early thermodynamics

A precursor of the engine was designed by the German scientist
Otto von Guericke Otto von Guericke ( , , ; spelled Gericke until 1666; November 20, 1602 – May 11, 1686 ; November 30, 1602 – May 21, 1686 ) was a German scientist, inventor, and politician. His pioneering scientific work, the development of experimental me ...
who, in 1650, designed and built the world's first
vacuum pump A vacuum pump is a device that draws gas molecules from a sealed volume in order to leave behind a partial vacuum. The job of a vacuum pump is to generate a relative vacuum within a capacity. The first vacuum pump was invented in 1650 by Otto v ...
to create a
vacuum A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
as demonstrated in the
Magdeburg hemispheres The Magdeburg hemispheres are a pair of large copper hemispheres, with mating rims. They were used to demonstrate the power of atmospheric pressure. When the rims were sealed with grease and the air was pumped out, the sphere contained a vacuum a ...
experiment. He was driven to make a vacuum to disprove
Aristotle Aristotle (; grc-gre, Ἀριστοτέλης ''Aristotélēs'', ; 384–322 BC) was a Greek philosopher and polymath during the Classical period in Ancient Greece. Taught by Plato, he was the founder of the Peripatetic school of phil ...
's long-held supposition that 'Nature abhors a vacuum'. Shortly thereafter, Irish physicist and chemist Boyle had learned of Guericke's designs and in 1656, in coordination with English scientist
Robert Hooke Robert Hooke FRS (; 18 July 16353 March 1703) was an English polymath active as a scientist, natural philosopher and architect, who is credited to be one of two scientists to discover microorganisms in 1665 using a compound microscope that ...
, built an air pump. Using this pump, Boyle and Hooke noticed the pressure-volume correlation for a gas: ''PV'' = ''k'', where ''P'' is
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, ''V'' is
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
and ''k'' is a constant: this relationship is known as
Boyle's Law Boyle's law, also referred to as the Boyle–Mariotte law, or Mariotte's law (especially in France), is an experimental gas law that describes the relationship between pressure and volume of a confined gas. Boyle's law has been stated as: The ...
. In that time, air was assumed to be a system of motionless particles, and not interpreted as a system of moving molecules. The concept of thermal motion came two centuries later. Therefore, Boyle's publication in 1660 speaks about a mechanical concept: the air spring. Later, after the invention of the thermometer, the property temperature could be quantified. This tool gave
Gay-Lussac Joseph Louis Gay-Lussac (, , ; 6 December 1778 – 9 May 1850) was a French chemist and physicist. He is known mostly for his discovery that water is made of two parts hydrogen and one part oxygen (with Alexander von Humboldt), for two laws ...
the opportunity to derive his law, which led shortly later to the
ideal gas law The ideal gas law, also called the general gas equation, is the equation of state of a hypothetical ideal gas. It is a good approximation of the behavior of many gases under many conditions, although it has several limitations. It was first stat ...
. But, already before the establishment of the ideal gas law, an associate of Boyle's named
Denis Papin Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker and of the steam engine. Early lif ...
built in 1679 a bone digester, which is a closed vessel with a tightly fitting lid that confines steam until a high pressure is generated. Later designs implemented a steam release valve to keep the machine from exploding. By watching the valve rhythmically move up and down, Papin conceived of the idea of a piston and cylinder engine. He did not however follow through with his design. Nevertheless, in 1697, based on Papin's designs, engineer
Thomas Savery Thomas Savery (; c. 1650 – 15 May 1715) was an English inventor and engineer. He invented the first commercially used steam-powered device, a steam pump which is often referred to as the "Savery engine". Savery's steam pump was a revolutiona ...
built the first engine. Although these early engines were crude and inefficient, they attracted the attention of the leading scientists of the time. Hence, prior to 1698 and the invention of the Savery Engine, horses were used to power pulleys, attached to buckets, which lifted water out of flooded salt mines in England. In the years to follow, more variations of steam engines were built, such as the
Newcomen Engine The atmospheric engine was invented by Thomas Newcomen in 1712, and is often referred to as the Newcomen fire engine (see below) or simply as a Newcomen engine. The engine was operated by condensing steam drawn into the cylinder, thereby creati ...
, and later the
Watt Engine The Watt steam engine design became synonymous with steam engines, and it was many years before significantly new designs began to replace the basic Watt design. The first steam engines, introduced by Thomas Newcomen in 1712, were of the "at ...
. In time, these early engines would eventually be utilized in place of horses. Thus, each engine began to be associated with a certain amount of "horse power" depending upon how many horses it had replaced. The main problem with these first engines was that they were slow and clumsy, converting less than 2% of the input
fuel A fuel is any material that can be made to react with other substances so that it releases energy as thermal energy or to be used for work. The concept was originally applied solely to those materials capable of releasing chemical energy but ...
into useful work. In other words, large quantities of coal (or wood) had to be burned to yield only a small fraction of work output. Hence the need for a new science of engine dynamics was born.


18th-century developments

During the 18th century, the mechanics founded by Newton was developed by several scientists as more mathematicians learned calculus and elaborated upon its initial formulation. The application of mathematical analysis to problems of motion was known as rational mechanics, or mixed mathematics (and was later termed
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
).


Mechanics

In 1714, Brook Taylor derived the
fundamental frequency The fundamental frequency, often referred to simply as the ''fundamental'', is defined as the lowest frequency of a periodic waveform. In music, the fundamental is the musical pitch of a note that is perceived as the lowest partial present. In ...
of a stretched vibrating string in terms of its tension and mass per unit length by solving a
differential equation In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
. The Swiss mathematician
Daniel Bernoulli Daniel Bernoulli FRS (; – 27 March 1782) was a Swiss mathematician and physicist and was one of the many prominent mathematicians in the Bernoulli family from Basel. He is particularly remembered for his applications of mathematics to mechan ...
(1700–1782) made important mathematical studies of the behavior of gases, anticipating the kinetic theory of gases developed more than a century later, and has been referred to as the first mathematical physicist. In 1733, Daniel Bernoulli derived the fundamental frequency and
harmonic A harmonic is a wave with a frequency that is a positive integer multiple of the ''fundamental frequency'', the frequency of the original periodic signal, such as a sinusoidal wave. The original signal is also called the ''1st harmonic'', the ...
s of a hanging chain by solving a differential equation. In 1734, Bernoulli solved the differential equation for the vibrations of an elastic bar clamped at one end. Bernoulli's treatment of
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
and his examination of
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
flow was introduced in his 1738 work ''
Hydrodynamica ''Hydrodynamica'' (Latin for ''Hydrodynamics'') is a book published by Daniel Bernoulli in 1738.The book's full title is ''Hydrodynamica, sive de Viribus et Motibus Fluidorum Commentarii'' (Hydrodynamics, or commentaries on the forces and moti ...
''. Rational mechanics dealt primarily with the development of elaborate mathematical treatments of observed motions, using Newtonian principles as a basis, and emphasized improving the tractability of complex calculations and developing of legitimate means of analytical approximation. A representative contemporary textbook was published by
Johann Baptiste Horvath Johann Baptiste Horvath ( hu, Keresztély János Horváth, 13 July 1732 in Kőszeg – 20 October 1799 in Buda) was a Hungarian Jesuit Professor of Physics and Philosophy at the Catholic university for teaching theology and philosophy in Nagyszo ...
. By the end of the century analytical treatments were rigorous enough to verify the stability of the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Solar S ...
solely on the basis of Newton's laws without reference to divine intervention—even as deterministic treatments of systems as simple as the
three body problem In physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's ...
in gravitation remained intractable. In 1705,
Edmond Halley Edmond (or Edmund) Halley (; – ) was an English astronomer, mathematician and physicist. He was the second Astronomer Royal in Britain, succeeding John Flamsteed in 1720. From an observatory he constructed on Saint Helena in 1676–77, H ...
predicted the periodicity of
Halley's Comet Halley's Comet or Comet Halley, officially designated 1P/Halley, is a short-period comet visible from Earth every 75–79 years. Halley is the only known short-period comet that is regularly visible to the naked eye from Earth, and thus the o ...
,
William Herschel Frederick William Herschel (; german: Friedrich Wilhelm Herschel; 15 November 1738 – 25 August 1822) was a German-born British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline H ...
discovered
Uranus Uranus is the seventh planet from the Sun. Its name is a reference to the Greek god of the sky, Uranus (mythology), Uranus (Caelus), who, according to Greek mythology, was the great-grandfather of Ares (Mars (mythology), Mars), grandfather ...
in 1781, and
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
measured the
gravitational constant The gravitational constant (also known as the universal gravitational constant, the Newtonian constant of gravitation, or the Cavendish gravitational constant), denoted by the capital letter , is an empirical physical constant involved in ...
and determined the mass of the Earth in 1798. In 1783,
John Michell John Michell (; 25 December 1724 – 21 April 1793) was an English people, English natural philosophy, natural philosopher and clergyman who provided pioneering insights into a wide range of scientific fields including astronomy, geology, opti ...
suggested that some objects might be so massive that not even light could escape from them. In 1739,
Leonhard Euler Leonhard Euler ( , ; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, geographer, logician and engineer who founded the studies of graph theory and topology and made pioneering and influential discoveries in ma ...
solved the ordinary differential equation for a forced harmonic oscillator and noticed the resonance phenomenon. In 1742,
Colin Maclaurin Colin Maclaurin (; gd, Cailean MacLabhruinn; February 1698 – 14 June 1746) was a Scottish mathematician who made important contributions to geometry and algebra. He is also known for being a child prodigy and holding the record for bei ...
discovered his uniformly rotating self-gravitating spheroids. In 1742, Benjamin Robins published his ''New Principles in Gunnery'', establishing the science of aerodynamics. British work, carried on by mathematicians such as Taylor and Maclaurin, fell behind Continental developments as the century progressed. Meanwhile, work flourished at scientific academies on the Continent, led by such mathematicians as Bernoulli, Euler, Lagrange, Laplace, and Legendre. In 1743,
Jean le Rond d'Alembert Jean-Baptiste le Rond d'Alembert (; ; 16 November 1717 – 29 October 1783) was a French mathematician, mechanician, physicist, philosopher, and music theorist. Until 1759 he was, together with Denis Diderot, a co-editor of the ''Encyclopédie ...
published his ''Traite de Dynamique'', in which he introduced the concept of generalized forces for accelerating systems and systems with constraints, and applied the new idea of
virtual work In mechanics, virtual work arises in the application of the ''principle of least action'' to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different for ...
to solve dynamical problem, now known as
D'Alembert's principle D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert. D'Alembert ...
, as a rival to Newton's second law of motion. In 1747,
Pierre Louis Maupertuis Pierre Louis Moreau de Maupertuis (; ; 1698 – 27 July 1759) was a French mathematician, philosopher and man of letters. He became the Director of the Académie des Sciences, and the first President of the Prussian Academy of Science, at the ...
applied minimum principles to mechanics. In 1759, Euler solved the partial differential equation for the vibration of a rectangular drum. In 1764, Euler examined the partial differential equation for the vibration of a circular drum and found one of the Bessel function solutions. In 1776,
John Smeaton John Smeaton (8 June 1724 – 28 October 1792) was a British civil engineer responsible for the design of bridges, canals, harbours and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Smeaton was the fir ...
published a paper on experiments relating power,
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
,
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
and
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
, and supporting the
conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
. In 1788, Joseph Louis Lagrange presented Lagrange's equations of motion in ''Mécanique Analytique'', in which the whole of mechanics was organized around the principle of virtual work. In 1789,
Antoine Lavoisier Antoine-Laurent de Lavoisier ( , ; ; 26 August 17438 May 1794), When reduced without charcoal, it gave off an air which supported respiration and combustion in an enhanced way. He concluded that this was just a pure form of common air and th ...
states the law of
conservation of mass In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
. The rational mechanics developed in the 18th century received a brilliant exposition in both Lagrange's 1788 work and the ''Celestial Mechanics'' (1799–1825) of
Pierre-Simon Laplace Pierre-Simon, marquis de Laplace (; ; 23 March 1749 – 5 March 1827) was a French scholar and polymath whose work was important to the development of engineering, mathematics, statistics, physics, astronomy, and philosophy. He summarized ...
.


Thermodynamics

During the 18th century, thermodynamics was developed through the theories of weightless "imponderable fluids", such as heat ("caloric"),
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
, and
phlogiston The phlogiston theory is a superseded scientific theory that postulated the existence of a fire-like element called phlogiston () contained within combustible bodies and released during combustion. The name comes from the Ancient Greek (''burni ...
(which was rapidly overthrown as a concept following Lavoisier's identification of
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
gas late in the century). Assuming that these concepts were real fluids, their flow could be traced through a mechanical apparatus or chemical reactions. This tradition of experimentation led to the development of new kinds of experimental apparatus, such as the
Leyden Jar A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It typi ...
; and new kinds of measuring instruments, such as the
calorimeter A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimete ...
, and improved versions of old ones, such as the
thermometer A thermometer is a device that temperature measurement, measures temperature or a temperature gradient (the degree of hotness or coldness of an object). A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a merc ...
. Experiments also produced new concepts, such as the
University of Glasgow , image = UofG Coat of Arms.png , image_size = 150px , caption = Coat of arms Flag , latin_name = Universitas Glasguensis , motto = la, Via, Veritas, Vita , ...
experimenter
Joseph Black Joseph Black (16 April 1728 – 6 December 1799) was a Scottish physicist and chemist, known for his discoveries of magnesium, latent heat, specific heat, and carbon dioxide. He was Professor of Anatomy and Chemistry at the University of Glas ...
's notion of
latent heat Latent heat (also known as latent energy or heat of transformation) is energy released or absorbed, by a body or a thermodynamic system, during a constant-temperature process — usually a first-order phase transition. Latent heat can be understo ...
and Philadelphia intellectual
Benjamin Franklin Benjamin Franklin ( April 17, 1790) was an American polymath who was active as a writer, scientist, inventor, statesman, diplomat, printer, publisher, and political philosopher. Encyclopædia Britannica, Wood, 2021 Among the leading inte ...
's characterization of electrical fluid as flowing between places of excess and deficit (a concept later reinterpreted in terms of positive and negative
charges Charge or charged may refer to: Arts, entertainment, and media Films * ''Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * '' Charge!!'', an album by The Aqu ...
). Franklin also showed that lightning is electricity in 1752. The accepted theory of heat in the 18th century viewed it as a kind of fluid, called caloric; although this theory was later shown to be erroneous, a number of scientists adhering to it nevertheless made important discoveries useful in developing the modern theory, including
Joseph Black Joseph Black (16 April 1728 – 6 December 1799) was a Scottish physicist and chemist, known for his discoveries of magnesium, latent heat, specific heat, and carbon dioxide. He was Professor of Anatomy and Chemistry at the University of Glas ...
(1728–99) and
Henry Cavendish Henry Cavendish ( ; 10 October 1731 – 24 February 1810) was an English natural philosopher and scientist who was an important experimental and theoretical chemist and physicist. He is noted for his discovery of hydrogen, which he termed "infl ...
(1731–1810). Opposed to this caloric theory, which had been developed mainly by the chemists, was the less accepted theory dating from Newton's time that heat is due to the motions of the particles of a substance. This mechanical theory gained support in 1798 from the cannon-boring experiments of Count Rumford (
Benjamin Thompson Sir Benjamin Thompson, Count Rumford, FRS (german: Reichsgraf von Rumford; March 26, 1753August 21, 1814) was an American-born British physicist and inventor whose challenges to established physical theory were part of the 19th-century revolut ...
), who found a direct relationship between heat and mechanical energy. While it was recognized early in the 18th century that finding absolute theories of electrostatic and magnetic force akin to Newton's principles of motion would be an important achievement, none were forthcoming. This impossibility only slowly disappeared as experimental practice became more widespread and more refined in the early years of the 19th century in places such as the newly established
Royal Institution The Royal Institution of Great Britain (often the Royal Institution, Ri or RI) is an organisation for scientific education and research, based in the City of Westminster. It was founded in 1799 by the leading British scientists of the age, inc ...
in London. Meanwhile, the analytical methods of rational mechanics began to be applied to experimental phenomena, most influentially with the French mathematician
Joseph Fourier Jean-Baptiste Joseph Fourier (; ; 21 March 1768 – 16 May 1830) was a French people, French mathematician and physicist born in Auxerre and best known for initiating the investigation of Fourier series, which eventually developed into Fourier an ...
's analytical treatment of the flow of heat, as published in 1822.
Joseph Priestley Joseph Priestley (; 24 March 1733 – 6 February 1804) was an English chemist, natural philosopher, separatist theologian, grammarian, multi-subject educator, and liberal political theorist. He published over 150 works, and conducted exp ...
proposed an electrical inverse-square law in 1767, and
Charles-Augustin de Coulomb Charles-Augustin de Coulomb (; ; 14 June 1736 – 23 August 1806) was a French officer, engineer, and physicist. He is best known as the eponymous discoverer of what is now called Coulomb's law, the description of the electrostatic force of attrac ...
introduced the inverse-square law of
electrostatics Electrostatics is a branch of physics that studies electric charges at rest (static electricity). Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber ...
in 1798. At the end of the century, the members of the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ...
had attained clear dominance in the field. At the same time, the experimental tradition established by Galileo and his followers persisted. The
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
and the
French Academy of Sciences The French Academy of Sciences (French: ''Académie des sciences'') is a learned society, founded in 1666 by Louis XIV of France, Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific me ...
were major centers for the performance and reporting of experimental work. Experiments in mechanics, optics,
magnetism Magnetism is the class of physical attributes that are mediated by a magnetic field, which refers to the capacity to induce attractive and repulsive phenomena in other entities. Electric currents and the magnetic moments of elementary particles ...
,
static electricity Static electricity is an imbalance of electric charges within or on the surface of a material or between materials. The charge remains until it is able to move away by means of an electric current or electrical discharge. Static electricity is na ...
,
chemistry Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
, and
physiology Physiology (; ) is the scientific study of functions and mechanisms in a living system. As a sub-discipline of biology, physiology focuses on how organisms, organ systems, individual organs, cells, and biomolecules carry out the chemical ...
were not clearly distinguished from each other during the 18th century, but significant differences in explanatory schemes and, thus, experiment design were emerging. Chemical experimenters, for instance, defied attempts to enforce a scheme of abstract Newtonian forces onto chemical affiliations, and instead focused on the isolation and classification of chemical substances and reactions.


19th century


Mechanics

In 1821, William Hamilton began his analysis of Hamilton's characteristic function. In 1835, he stated Hamilton's canonical equations of motion. In 1813,
Peter Ewart Peter Ewart (14 May 1767 – 15 September 1842) was a British engineer who was influential in developing the technologies of turbines and theories of thermodynamics. Biography He was son of the Church of Scotland minister of Troqueer near D ...
supported the idea of the conservation of energy in his paper ''On the measure of moving force''. In 1829, Gaspard Coriolis introduced the terms of
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
(force times distance) and
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its accele ...
with the meanings they have today. In 1841,
Julius Robert von Mayer Julius Robert von Mayer (25 November 1814 – 20 March 1878) was a German physician, chemist, and physicist and one of the founders of thermodynamics. He is best known for enunciating in 1841 one of the original statements of the conservation ...
, an
amateur An amateur () is generally considered a person who pursues an avocation independent from their source of income. Amateurs and their pursuits are also described as popular, informal, autodidacticism, self-taught, user-generated, do it yourself, DI ...
scientist, wrote a paper on the conservation of energy, although his lack of academic training led to its rejection. In 1847,
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, ...
formally stated the law of conservation of energy.


Electromagnetism

In 1800,
Alessandro Volta Alessandro Giuseppe Antonio Anastasio Volta (, ; 18 February 1745 – 5 March 1827) was an Italian physicist, chemist and lay Catholic who was a pioneer of electricity and power who is credited as the inventor of the electric battery and the ...
invented the electric battery (known as the
voltaic pile upright=1.2, Schematic diagram of a copper–zinc voltaic pile. The copper and zinc discs were separated by cardboard or felt spacers soaked in salt water (the electrolyte). Volta's original piles contained an additional zinc disk at the bottom, ...
) and thus improved the way electric currents could also be studied. A year later, Thomas Young demonstrated the wave nature of light—which received strong experimental support from the work of
Augustin-Jean Fresnel Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Isaac Newton, Newton's co ...
—and the principle of interference. In 1820,
Hans Christian Ørsted Hans Christian Ørsted ( , ; often rendered Oersted in English; 14 August 17779 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields, which was the first connection found between electricity ...
found that a current-carrying conductor gives rise to a magnetic force surrounding it, and within a week after Ørsted's discovery reached France,
André-Marie Ampère André-Marie Ampère (, ; ; 20 January 177510 June 1836) was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as "electrodynamics". He is also the inventor of nu ...
discovered that two parallel electric currents will exert forces on each other. In 1821,
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
built an electricity-powered motor, while
Georg Ohm Georg Simon Ohm (, ; 16 March 1789 – 6 July 1854) was a German physicist and mathematician. As a school teacher, Ohm began his research with the new electrochemical cell, invented by Italian scientist Alessandro Volta. Using equipment of his o ...
stated his law of electrical resistance in 1826, expressing the relationship between voltage, current, and resistance in an electric circuit. In 1831, Faraday (and independently
Joseph Henry Joseph Henry (December 17, 1797– May 13, 1878) was an American scientist who served as the first Secretary of the Smithsonian Institution. He was the secretary for the National Institute for the Promotion of Science, a precursor of the Smith ...
) discovered the reverse effect, the production of an electric potential or current through magnetism – known as
electromagnetic induction Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk ...
; these two discoveries are the basis of the electric motor and the electric generator, respectively.


Laws of thermodynamics

In the 19th century, the connection between heat and mechanical energy was established quantitatively by
Julius Robert von Mayer Julius Robert von Mayer (25 November 1814 – 20 March 1878) was a German physician, chemist, and physicist and one of the founders of thermodynamics. He is best known for enunciating in 1841 one of the original statements of the conservation ...
and
James Prescott Joule James Prescott Joule (; 24 December 1818 11 October 1889) was an English physicist, mathematician and brewer, born in Salford, Lancashire. Joule studied the nature of heat, and discovered its relationship to mechanical work (see energy). Th ...
, who measured the mechanical equivalent of heat in the 1840s. In 1849, Joule published results from his series of experiments (including the paddlewheel experiment) which show that heat is a form of energy, a fact that was accepted in the 1850s. The relation between heat and energy was important for the development of steam engines, and in 1824 the experimental and theoretical work of Sadi Carnot was published. Carnot captured some of the ideas of thermodynamics in his discussion of the efficiency of an idealized engine. Sadi Carnot's work provided a basis for the formulation of the
first law of thermodynamics The first law of thermodynamics is a formulation of the law of conservation of energy, adapted for thermodynamic processes. It distinguishes in principle two forms of energy transfer, heat and thermodynamic work for a system of a constant amoun ...
—a restatement of the
law of conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means that ...
—which was stated around 1850 by William Thomson, later known as Lord Kelvin, and
Rudolf Clausius Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle ...
. Lord Kelvin, who had extended the concept of absolute zero from gases to all substances in 1848, drew upon the engineering theory of
Lazare Carnot Lazare Nicolas Marguerite, Count Carnot (; 13 May 1753 – 2 August 1823) was a French mathematician, physicist and politician. He was known as the "Organizer of Victory" in the French Revolutionary Wars and Napoleonic Wars. Education and early ...
, Sadi Carnot, and Émile Clapeyron–as well as the experimentation of James Prescott Joule on the interchangeability of mechanical, chemical, thermal, and electrical forms of work—to formulate the first law. Kelvin and Clausius also stated the
second law of thermodynamics The second law of thermodynamics is a physical law based on universal experience concerning heat and Energy transformation, energy interconversions. One simple statement of the law is that heat always moves from hotter objects to colder objects ( ...
, which was originally formulated in terms of the fact that heat does not spontaneously flow from a colder body to a hotter. Other formulations followed quickly (for example, the second law was expounded in Thomson and
Peter Guthrie Tait Peter Guthrie Tait FRSE (28 April 1831 – 4 July 1901) was a Scottish mathematical physicist and early pioneer in thermodynamics. He is best known for the mathematical physics textbook '' Treatise on Natural Philosophy'', which he co-wrote wi ...
's influential work ''Treatise on Natural Philosophy'') and Kelvin in particular understood some of the law's general implications. The second Law was the idea that gases consist of molecules in motion had been discussed in some detail by Daniel Bernoulli in 1738, but had fallen out of favor, and was revived by Clausius in 1857. In 1850,
Hippolyte Fizeau Armand Hippolyte Louis Fizeau FRS FRSE MIF (; 23 September 181918 September 1896) was a French physicist, best known for measuring the speed of light in the namesake Fizeau experiment. Biography Fizeau was born in Paris to Louis and Beatrice Fiz ...
and
Léon Foucault Jean Bernard Léon Foucault (, ; ; 18 September 1819 – 11 February 1868) was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of Earth's rotation. He also made an early measurement ...
measured the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in water and find that it is slower than in air, in support of the wave model of light. In 1852, Joule and Thomson demonstrated that a rapidly expanding gas cools, later named the
Joule–Thomson effect In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a ''real'' gas or liquid (as differentiated from an ideal gas) when it is forced through a valv ...
or Joule–Kelvin effect.
Hermann von Helmholtz Hermann Ludwig Ferdinand von Helmholtz (31 August 1821 – 8 September 1894) was a German physicist and physician who made significant contributions in several scientific fields, particularly hydrodynamic stability. The Helmholtz Association, ...
puts forward the idea of the
heat death of the universe The heat death of the universe (also known as the Big Chill or Big Freeze) is a hypothesis on the ultimate fate of the universe, which suggests the universe will evolve to a state of no thermodynamic free energy, and will therefore be unabl ...
in 1854, the same year that Clausius established the importance of ''dQ/T'' ( Clausius's theorem) (though he did not yet name the quantity).


Statistical mechanics (a fundamentally new approach to science)

In 1859,
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
discovered the distribution law of molecular velocities. Maxwell showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. In 1859, Maxwell worked out the mathematics of the distribution of velocities of the molecules of a gas. The wave theory of light was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related. In 1864 James Maxwell published his papers on a dynamical theory of the electromagnetic field, and stated that light is an electromagnetic phenomenon in the 1873 publication of Maxwell's '' Treatise on Electricity and Magnetism''. This work drew upon theoretical work by German theoreticians such as
Carl Friedrich Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
and Wilhelm Weber. The encapsulation of heat in particulate motion, and the addition of electromagnetic forces to Newtonian dynamics established an enormously robust theoretical underpinning to physical observations. The prediction that light represented a transmission of energy in wave form through a "
luminiferous ether Luminiferous aether or ether ("luminiferous", meaning "light-bearing") was the postulated Transmission medium, medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty ...
", and the seeming confirmation of that prediction with Helmholtz student
Heinrich Hertz Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's Maxwell's equations, equations of electrom ...
's 1888 detection of electromagnetic radiation, was a major triumph for physical theory and raised the possibility that even more fundamental theories based on the field could soon be developed. Experimental confirmation of Maxwell's theory was provided by Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. In 1887, Heinrich Hertz discovered the photoelectric effect. Research on the electromagnetic waves began soon after, with many scientists and inventors conducting experiments on their properties. In the mid to late 1890s Guglielmo Marconi developed a radio wave based wireless telegraphy system (see invention of radio). The atomic theory of matter had been proposed again in the early 19th century by the chemist John Dalton and became one of the hypotheses of the kinetic-molecular theory of gases developed by Clausius and James Clerk Maxwell to explain the laws of thermodynamics. The kinetic theory in turn led to a revolutionary approach to science, the statistical mechanics of Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903), which studies the statistics of microstates of a system and uses statistics to determine the state of a physical system. Interrelating the statistical likelihood of certain states of organization of these particles with the energy of those states, Clausius reinterpreted the dissipation of energy to be the statistical tendency of molecular configurations to pass toward increasingly likely, increasingly disorganized states (coining the term "entropy" to describe the disorganization of a state). The statistical versus absolute interpretations of the second law of thermodynamics set up a dispute that would last for several decades (producing arguments such as "Maxwell's demon"), and that would not be held to be definitively resolved until the behavior of atoms was firmly established in the early 20th century. In 1902, James Jeans found the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium.


Other developments

In 1822, botanist Robert Brown (Scottish botanist from Montrose), Robert Brown discovered Brownian motion: pollen grains in water undergoing movement resulting from their bombardment by the fast-moving atoms or molecules in the liquid. In 1834, Carl Gustav Jakob Jacobi, Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids (the Jacobi ellipsoid). In 1834, John Scott Russell, John Russell observed a nondecaying solitary water wave (soliton) in the Union Canal (Scotland), Union Canal near Edinburgh and used a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth. In 1835, Gaspard Coriolis examined theoretically the mechanical efficiency of waterwheels, and deduced the Coriolis effect. In 1842, Christian Doppler proposed the Doppler effect. In 1851,
Léon Foucault Jean Bernard Léon Foucault (, ; ; 18 September 1819 – 11 February 1868) was a French physicist best known for his demonstration of the Foucault pendulum, a device demonstrating the effect of Earth's rotation. He also made an early measurement ...
showed the Earth's rotation with a huge
pendulum A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the ...
(Foucault pendulum). There were important advances in continuum mechanics in the first half of the century, namely formulation of elastic modulus, laws of elasticity for solids and discovery of Navier–Stokes equations for fluids.


20th century: birth of modern physics

At the end of the 19th century, physics had evolved to the point at which
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
could cope with highly complex problems involving macroscopic situations; thermodynamics and kinetic theory were well established; geometrical and physical optics could be understood in terms of electromagnetic waves; and the conservation laws for energy and momentum (and mass) were widely accepted. So profound were these and other developments that it was generally accepted that all the important laws of physics had been discovered and that, henceforth, research would be concerned with clearing up minor problems and particularly with improvements of method and measurement. However, around 1900 serious doubts arose about the completeness of the classical theories—the triumph of Maxwell's theories, for example, was undermined by inadequacies that had already begun to appear—and their inability to explain certain physical phenomena, such as the energy distribution in blackbody radiation and the photoelectric effect, while some of the theoretical formulations led to paradoxes when pushed to the limit. Prominent physicists such as Hendrik Lorentz, Emil Cohn, Ernst Wiechert and Wilhelm Wien believed that some modification of Maxwell's equations might provide the basis for all physical laws. These shortcomings of
classical physics Classical physics is a group of physics theories that predate modern, more complete, or more widely applicable theories. If a currently accepted theory is considered to be modern, and its introduction represented a major paradigm shift, then the ...
were never to be resolved and new ideas were required. At the beginning of the 20th century a major revolution shook the world of physics, which led to a new era, generally referred to as
modern physics Modern physics is a branch of physics that developed in the early 20th century and onward or branches greatly influenced by early 20th century physics. Notable branches of modern physics include quantum mechanics, special relativity and general ...
.


Radiation experiments

In the 19th century, experimenters began to detect unexpected forms of radiation: Wilhelm Röntgen caused a sensation with his discovery of X-rays in 1895; in 1896 Henri Becquerel discovered that certain kinds of matter emit radiation on their own accord. In 1897, J. J. Thomson discovered the electron, and new radioactive elements found by Marie Curie, Marie and Pierre Curie raised questions about the supposedly indestructible atom and the nature of matter. Marie and Pierre coined the term "radioactive decay, radioactivity" to describe this property of matter, and isolated the radioactive elements radium and polonium. Ernest Rutherford and Frederick Soddy identified two of Becquerel's forms of radiation with electrons and the element helium. Rutherford identified and named two types of radioactivity and in 1911 interpreted experimental evidence as showing that the atom consists of a dense, positively charged nucleus surrounded by negatively charged electrons. Classical theory, however, predicted that this structure should be unstable. Classical theory had also failed to explain successfully two other experimental results that appeared in the late 19th century. One of these was the demonstration by Albert A. Michelson and Edward W. Morley—known as the Michelson–Morley experiment—which showed there did not seem to be a preferred frame of reference, at rest with respect to the hypothetical luminiferous ether, for describing electromagnetic phenomena. Studies of radiation and radioactive decay continued to be a preeminent focus for physical and chemical research through the 1930s, when the discovery of nuclear fission by Lise Meitner and Otto Frisch opened the way to the practical exploitation of what came to be called Nuclear power, "atomic" energy.


Albert Einstein's theory of relativity

In 1905, a 26-year-old German physicist named Albert Einstein (then a patent clerk in Bern, Switzerland) showed how measurements of time and space are affected by motion between an observer and what is being observed. Einstein's radical theory of relativity revolutionized science. Although Einstein made many other important contributions to science, the theory of relativity alone represents one of the greatest intellectual achievements of all time. Although the concept of relativity was not introduced by Einstein, his major contribution was the recognition that the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
in a vacuum is constant, i.e. the same for all observers, and an absolute physical boundary for motion. This does not impact a person's day-to-day life since most objects travel at speeds much slower than light speed. For objects travelling near light speed, however, the theory of relativity shows that clocks associated with those objects will run more slowly and that the objects shorten in length according to measurements of an observer on Earth. Einstein also derived the famous equation, ''E'' = ''mc''2, which expresses the Mass–energy equivalence, equivalence of mass and energy.


Special relativity

Einstein argued that the speed of light was a constant in all Inertial frame of reference, inertial reference frames and that electromagnetic laws should remain valid independent of reference frame—assertions which rendered the ether "superfluous" to physical theory, and that held that observations of time and length varied relative to how the observer was moving with respect to the object being measured (what came to be called the "special relativity, special theory of relativity"). It also followed that mass and energy were interchangeable quantities according to the equation Mass–energy equivalence, ''E''=''mc''2. In another paper published the same year, Einstein asserted that electromagnetic radiation was transmitted in discrete quantities ("Quantum, quanta"), according to a constant that the theoretical physicist Max Planck had posited in 1900 to arrive at an accurate theory for the distribution of blackbody radiation—an assumption that explained the strange properties of the photoelectric effect. The special theory of relativity is a formulation of the relationship between physical observations and the concepts of space and time. The theory arose out of contradictions between electromagnetism and Newtonian mechanics and had great impact on both those areas. The original historical issue was whether it was meaningful to discuss the electromagnetic wave-carrying "ether" and motion relative to it and also whether one could detect such motion, as was unsuccessfully attempted in the Michelson–Morley experiment. Einstein demolished these questions and the ether concept in his special theory of relativity. However, his basic formulation does not involve detailed electromagnetic theory. It arises out of the question: "What is time?" Newton, in the ''Philosophiæ Naturalis Principia Mathematica, Principia'' (1686), had given an unambiguous answer: "Absolute, true, and mathematical time, of itself, and from its own nature, flows equably without relation to anything external, and by another name is called duration." This definition is basic to all classical physics. Einstein had the genius to question it, and found that it was incomplete. Instead, each "observer" necessarily makes use of his or her own scale of time, and for two observers in relative motion, their time-scales will differ. This induces a related effect on position measurements. Space and time become intertwined concepts, fundamentally dependent on the observer. Each observer presides over his or her own space-time framework or coordinate system. There being no absolute frame of reference, all observers of given events make different but equally valid (and reconcilable) measurements. What remains absolute is stated in Einstein's relativity postulate: "The basic laws of physics are identical for two observers who have a constant relative velocity with respect to each other." Special relativity had a profound effect on physics: started as a rethinking of the theory of electromagnetism, it found a new symmetry (physics), symmetry law of nature, now called ''Poincaré symmetry'', that replaced the old Galilean symmetry. Special relativity exerted another long-lasting effect on dynamics (physics), dynamics. Although initially it was credited with the "unification of mass and energy", it became evident that relativistic dynamics established a firm ''distinction'' between rest mass, which is an invariant (observer independent) property of a particle or system of particles, and the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat a ...
and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
of a system. The latter two are separately Conservation law (physics), conserved in all situations but not invariant with respect to different observers. The term ''
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different elementar ...
'' in particle physics underwent a semantic change, and since the late 20th century it almost exclusively denotes the invariant mass, rest (or ''invariant'') mass.


General relativity

By 1916, Einstein was able to generalize this further, to deal with all states of motion including non-uniform acceleration, which became the general theory of relativity. In this theory Einstein also specified a new concept, the curvature of space-time, which described the gravitational effect at every point in space. In fact, the curvature of space-time completely replaced Newton's universal law of gravitation. According to Einstein, gravitational force in the normal sense is a kind of illusion caused by the geometry of space. The presence of a mass causes a curvature of space-time in the vicinity of the mass, and this curvature dictates the space-time path that all freely-moving objects must follow. It was also predicted from this theory that light should be subject to gravity - all of which was verified experimentally. This aspect of relativity explained the phenomena of light bending around the sun, predicted black holes as well as properties of the Cosmic microwave background radiation — a discovery rendering fundamental anomalies in the classic Steady-State hypothesis. For his work on relativity, the photoelectric effect and blackbody radiation, Einstein received the Nobel Prize in 1921. The gradual acceptance of Einstein's theories of relativity and the quantized nature of light transmission, and of Niels Bohr's model of the atom created as many problems as they solved, leading to a full-scale effort to reestablish physics on new fundamental principles. Expanding relativity to cases of accelerating reference frames (the "general relativity, general theory of relativity") in the 1910s, Einstein posited an equivalence between the inertial force of acceleration and the force of gravity, leading to the conclusion that space is curved and finite in size, and the prediction of such phenomena as gravitational lensing and the distortion of time in gravitational fields.


Quantum mechanics

Although relativity resolved the electromagnetic phenomena conflict demonstrated by Michelson and Morley, a second theoretical problem was the explanation of the distribution of electromagnetic radiation emitted by a black body; experiment showed that at shorter wavelengths, toward the ultraviolet end of the spectrum, the energy approached zero, but classical theory predicted it should become infinite. This glaring discrepancy, known as the ultraviolet catastrophe, was solved by the new theory of quantum mechanics. Quantum mechanics is the theory of atoms and subatomic systems. Approximately the first 30 years of the 20th century represent the time of the conception and evolution of the theory. The basic ideas of quantum theory were introduced in 1900 by Max Planck (1858–1947), who was awarded the Nobel Prize for Physics in 1918 for his discovery of the quantified nature of energy. The quantum theory (which previously relied in the "correspondence" at large scales between the quantized world of the atom and the continuities of the "Physics in the Classical Limit, classical" world) was accepted when the Compton Effect established that light carries momentum and can scatter off particles, and when Louis de Broglie asserted that matter can be seen as behaving as a wave in much the same way as electromagnetic waves behave like particles (wave–particle duality). In 1905, Einstein used the quantum theory to explain the photoelectric effect, and in 1913 the Danish physicist Niels Bohr used the same constant to explain the stability of Rutherford model, Rutherford's atom as well as the frequencies of light emitted by hydrogen gas. The quantized theory of the atom gave way to a full-scale quantum mechanics in the 1920s. New principles of a "quantum" rather than a "classical" mechanics, formulated in Matrix mechanics, matrix-form by Werner Heisenberg, Max Born, and Pascual Jordan in 1925, were based on the probabilistic relationship between discrete "states" and denied the possibility of causality. Quantum mechanics was extensively developed by Heisenberg, Wolfgang Pauli, Paul Dirac, and Erwin Schrödinger, who established an equivalent theory based on waves in 1926; but Heisenberg's 1927 "uncertainty principle" (indicating the impossibility of precisely and simultaneously measuring position and
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
) and the "Copenhagen interpretation" of quantum mechanics (named after Bohr's home city) continued to deny the possibility of fundamental causality, though opponents such as Einstein would metaphorically assert that "God does not play dice with the universe". The new quantum mechanics became an indispensable tool in the investigation and explanation of phenomena at the atomic level. Also in the 1920s, the Indian scientist Satyendra Nath Bose's work on photons and quantum mechanics provided the foundation for Bose–Einstein statistics, the theory of the Bose–Einstein condensate. The spin–statistics theorem established that any particle in quantum mechanics may be either a boson (statistically Bose–Einstein) or a fermion (statistically Fermi–Dirac statistics, Fermi–Dirac). It was later found that all Elementary particle, fundamental bosons transmit forces, such as the photon that transmits electromagnetism. Fermions are particles "like electrons and nucleons" and are the usual constituents of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
. Fermi–Dirac statistics later found numerous other uses, from astrophysics (see Degenerate matter) to semiconductor design.


Contemporary and particle physics


Quantum field theory

As the philosophically inclined continued to debate the fundamental nature of the universe, quantum theories continued to be produced, beginning with Paul Dirac's formulation of a relativistic quantum theory in 1928. However, attempts to quantize electromagnetic theory entirely were stymied throughout the 1930s by theoretical formulations yielding infinite energies. This situation was not considered adequately resolved until after World War II ended, when Julian Schwinger, Richard Feynman and Sin-Itiro Tomonaga independently posited the technique of renormalization, which allowed for an establishment of a robust quantum electrodynamics (QED). Meanwhile, new theories of Elementary particle, fundamental particles proliferated with the rise of the idea of the Quantum field theory, quantization of fields through "Exchange interaction, exchange forces" regulated by an exchange of short-lived Virtual particle, "virtual" particles, which were allowed to exist according to the laws governing the uncertainties inherent in the quantum world. Notably, Hideki Yukawa proposed that the positive charges of the Atomic nucleus, nucleus were kept together courtesy of a powerful but short-range force mediated by a particle with a mass between that of the electron and proton. This particle, the "pion", was identified in 1947 as part of what became a slew of particles discovered after World War II. Initially, such particles were found as Ionization, ionizing radiation left by cosmic rays, but increasingly came to be produced in newer and more powerful particle accelerators. Outside particle physics, significant advances of the time were: * the invention of the laser (1964 Nobel Prize in Physics); * the theoretical and experimental research of superconductivity, especially the invention of a Ginzburg–Landau theory, quantum theory of superconductivity by Vitaly Ginzburg and Lev Landau (1962 Nobel Prize in Physics) and, later, its explanation via Cooper pairs (1972 Nobel Prize in Physics). The Cooper pair was an early example of quasiparticles.


Unified field theories

Einstein deemed that all fundamental interactions in nature can be explained in a single theory. Unified field theories were numerous attempts to "merge" several interactions. One of many formulations of such theories (as well as field theories in general) is a ''gauge theory'', a generalization of the idea of symmetry. Eventually the Standard Model (see below) succeeded in unification of strong, weak, and electromagnetic interactions. All attempts to unify gravitation with something else failed.


Standard Model

When parity (physics), parity was broken in weak interactions by Chien-Shiung Wu in her Wu experiment, experiment, a series of discoveries were created thereafter. The interaction of these particles by scattering and Particle decay, decay provided a key to new fundamental quantum theories. Murray Gell-Mann and Yuval Ne'eman brought some order to these new particles by classifying them according to certain qualities, beginning with what Gell-Mann referred to as the "Eightfold way (physics), Eightfold Way". While its further development, the quark model, at first seemed inadequate to describe Strong interaction, strong nuclear forces, allowing the temporary rise of competing theories such as the S-Matrix, the establishment of quantum chromodynamics in the 1970s finalized a set of fundamental and exchange particles, which allowed for the establishment of a "Standard Model, standard model" based on the mathematics of Gauge theory, gauge invariance, which successfully described all forces except for gravitation, and which remains generally accepted within its domain of application. The Standard Model, based on the Yang–Mills theory groups the electroweak interaction theory and quantum chromodynamics into a structure denoted by the gauge group SU(3)×SU(2)×U(1). The formulation of the unification of the electromagnetic and weak interactions in the standard model is due to Abdus Salam, Steven Weinberg and, subsequently, Sheldon Glashow. Electroweak theory was later confirmed experimentally (by observation of Neutral current, neutral weak currents), and distinguished by the 1979 Nobel Prize in Physics. Since the 1970s, fundamental particle physics has provided insights into early universe cosmology, particularly the Big Bang theory proposed as a consequence of Einstein's general relativity, general theory of relativity. However, starting in the 1990s, astronomical observations have also provided new challenges, such as the need for new explanations of galactic stability ("dark matter") and the Accelerating universe, apparent acceleration in the expansion of the universe ("dark energy"). While accelerators have confirmed most aspects of the Standard Model by detecting expected particle interactions at various collision energies, no theory reconciling general relativity with the Standard Model has yet been found, although supersymmetry and string theory were believed by many theorists to be a promising avenue forward. The Large Hadron Collider, however, which began operating in 2008, has failed to find any evidence whatsoever that is supportive of supersymmetry and string theory.


Cosmology

Cosmology may be said to have become a serious research question with the publication of Einstein's General Theory of Relativity in 1915 although it did not enter the scientific mainstream until the period known as the "Golden age of general relativity". About a decade later, in the midst of what was dubbed the "Great Debate (astronomy), Great Debate", Edwin Hubble, Hubble and Vesto Slipher, Slipher discovered the expansion of universe in the 1920s measuring the redshifts of Doppler spectra from galactic nebulae. Using Einstein's general relativity, Georges Lemaître, Lemaître and George Gamow, Gamow formulated what would become known as the big bang theory. A rival, called the steady state theory, was devised by Fred Hoyle, Hoyle, Thomas Gold, Gold, Jayant Narlikar, Narlikar and Hermann Bondi, Bondi. Cosmic background radiation was verified in the 1960s by Arno Allan Penzias, Penzias and Robert Woodrow Wilson, Wilson, and this discovery favoured the big bang at the expense of the steady state scenario. Later work was by George Smoot, Smoot et al. (1989), among other contributors, using data from the Cosmic Background explorer (CoBE) and the Wilkinson Microwave Anisotropy Probe (WMAP) satellites that refined these observations. The 1980s (the same decade of the COBE measurements) also saw the proposal of Inflation (cosmology), inflation theory by Alan Guth. Recently the problems of dark matter and dark energy have risen to the top of the cosmology agenda.


Higgs boson

On July 4, 2012, physicists working at CERN's Large Hadron Collider announced that they had discovered a new subatomic particle greatly resembling the Higgs boson, a potential key to an understanding of why elementary particles have mass and indeed to the existence of diversity and life in the universe. For now, some physicists are calling it a "Higgslike" particle. Joe Incandela, of the University of California, Santa Barbara, said, "It's something that may, in the end, be one of the biggest observations of any new phenomena in our field in the last 30 or 40 years, going way back to the discovery of quarks, for example." Michael Turner (cosmologist), Michael Turner, a cosmologist at the University of Chicago and the chairman of the physics center board, said: Peter Higgs was one of six physicists, working in three independent groups, who, in 1964, invented the notion of the Higgs field ("cosmic molasses"). The others were Tom Kibble of Imperial College London, Imperial College, London; C. R. Hagen, Carl Hagen of the University of Rochester; Gerald Guralnik of Brown University; and François Englert and Robert Brout, both of Université libre de Bruxelles. Although they have never been seen, Higgslike fields play an important role in theories of the universe and in string theory. Under certain conditions, according to the strange accounting of Einsteinian physics, they can become suffused with energy that exerts an antigravitational force. Such fields have been proposed as the source of an enormous burst of expansion, known as inflation, early in the universe and, possibly, as the secret of the dark energy that now seems to be speeding up the expansion of the universe.


Physical sciences

With increased accessibility to and elaboration upon advanced analytical techniques in the 19th century, physics was defined as much, if not more, by those techniques than by the search for universal principles of motion and energy, and the fundamental nature of
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic partic ...
. Fields such as acoustics, geophysics, astrophysics, aerodynamics, Plasma (physics), plasma physics, Cryogenics, low-temperature physics, and solid-state physics joined
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviole ...
,
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, electromagnetism, and
mechanics Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects r ...
as areas of physical research. In the 20th century, physics also became closely allied with such fields as Electrical engineering, electrical, Aerospace engineering, aerospace and Materials science, materials engineering, and physicists began to work in government and industrial laboratories as much as in academic settings. Following World War II, the population of physicists increased dramatically, and came to be centered on the United States, while, in more recent decades, physics has become a more international pursuit than at any time in its previous history.


Seminal physics publications


See also


Notes


References


Sources

* . * * . * . * . * . * . * . * . * * . * . * . * . * . * . * * . * . * . * . * . * . * . * . * . * * . * . * . * . * .


Further reading

* Buchwald, Jed Z. and Robert Fox, eds. ''The Oxford Handbook of the History of Physics'' (2014) 976pp
excerpt
* * * . * * * . * . * . * A selection of 56 articles, written by physicists. Commentaries and notes by Lloyd Motz and Dale McAdoo. * de Haas, Paul
"Historic Papers in Physics (20th Century)"


External links


"Selected Works about Isaac Newton and His Thought"
fro
''The Newton Project''
{{DEFAULTSORT:History Of Physics History of physics, History of science by discipline, Physics